Kantorovich-Rubinstein quasi-metrics I: Spaces of measures and of continuous valuations

We show that the space of subprobability measures, equivalently of subprobability continuous valuations, on an algebraic (resp., continuous) complete quasi-metric space is again algebraic (resp., continuous) and complete, when equipped with the Kantorovich-Rubinstein quasi-metrics dKR (unbounded) or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Topology and its applications 2021-05, Vol.295, p.107673, Article 107673
1. Verfasser: Goubault-Larrecq, Jean
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 107673
container_title Topology and its applications
container_volume 295
creator Goubault-Larrecq, Jean
description We show that the space of subprobability measures, equivalently of subprobability continuous valuations, on an algebraic (resp., continuous) complete quasi-metric space is again algebraic (resp., continuous) and complete, when equipped with the Kantorovich-Rubinstein quasi-metrics dKR (unbounded) or dKRa (bounded), themselves asymmetric forms of the well-known Kantorovich-Rubinstein metric. We also show that the dKR-Scott and the dKRa-Scott topologies then coincide with the weak topology. We obtain similar results for spaces of probability measures, equivalently of probability continuous valuations, with the dKRa quasi-metrics, or with the dKR quasi-metric under an additional rootedness assumption.
doi_str_mv 10.1016/j.topol.2021.107673
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03186371v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166864121000870</els_id><sourcerecordid>S0166864121000870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-5aa4d6fe3e8ba3d826fff2476f04e4c6a67cc8bbce8b70e3cc1251263ed024243</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKu_wMtePWzNxzbZCh6KqC0WBD_wGLLZCU3ZJjXJLvjv3XXFo6eZeed9B-ZB6JLgGcGEX-9myR98M6OYkl4RXLAjNCGlWOSMYnGMJr2L5yUvyCk6i3GHMSYLQSfo40m55IPvrN7mL21lXUxgXfbZqmjzPaRgdczWN9nrQWmImTfZHlRsQ98rVw-z9i5Z1_o2Zp1qWpWsd_EcnRjVRLj4rVP0_nD_drfKN8-P67vlJtespCmfK1XU3ACDslKsLik3xtBCcIMLKDRXXGhdVpXu9wID05rQOaGcQY1pQQs2RVfj3a1q5CHYvQpf0isrV8uNHDTMSMmZIB3pvWz06uBjDGD-AgTLgaPcyR-OcuAoR4596nZMQf9GZyHIqC04DbUNoJOsvf03_w2gVX4f</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Kantorovich-Rubinstein quasi-metrics I: Spaces of measures and of continuous valuations</title><source>Elsevier ScienceDirect Journals</source><creator>Goubault-Larrecq, Jean</creator><creatorcontrib>Goubault-Larrecq, Jean</creatorcontrib><description>We show that the space of subprobability measures, equivalently of subprobability continuous valuations, on an algebraic (resp., continuous) complete quasi-metric space is again algebraic (resp., continuous) and complete, when equipped with the Kantorovich-Rubinstein quasi-metrics dKR (unbounded) or dKRa (bounded), themselves asymmetric forms of the well-known Kantorovich-Rubinstein metric. We also show that the dKR-Scott and the dKRa-Scott topologies then coincide with the weak topology. We obtain similar results for spaces of probability measures, equivalently of probability continuous valuations, with the dKRa quasi-metrics, or with the dKR quasi-metric under an additional rootedness assumption.</description><identifier>ISSN: 0166-8641</identifier><identifier>EISSN: 1879-3207</identifier><identifier>DOI: 10.1016/j.topol.2021.107673</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Continuous valuation ; General Topology ; Kantorovich-Rubinstein quasi-metric ; Mathematics ; Probability ; Quasi-metric ; Weak topology</subject><ispartof>Topology and its applications, 2021-05, Vol.295, p.107673, Article 107673</ispartof><rights>2021 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-5aa4d6fe3e8ba3d826fff2476f04e4c6a67cc8bbce8b70e3cc1251263ed024243</citedby><cites>FETCH-LOGICAL-c382t-5aa4d6fe3e8ba3d826fff2476f04e4c6a67cc8bbce8b70e3cc1251263ed024243</cites><orcidid>0000-0001-5879-3304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0166864121000870$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03186371$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Goubault-Larrecq, Jean</creatorcontrib><title>Kantorovich-Rubinstein quasi-metrics I: Spaces of measures and of continuous valuations</title><title>Topology and its applications</title><description>We show that the space of subprobability measures, equivalently of subprobability continuous valuations, on an algebraic (resp., continuous) complete quasi-metric space is again algebraic (resp., continuous) and complete, when equipped with the Kantorovich-Rubinstein quasi-metrics dKR (unbounded) or dKRa (bounded), themselves asymmetric forms of the well-known Kantorovich-Rubinstein metric. We also show that the dKR-Scott and the dKRa-Scott topologies then coincide with the weak topology. We obtain similar results for spaces of probability measures, equivalently of probability continuous valuations, with the dKRa quasi-metrics, or with the dKR quasi-metric under an additional rootedness assumption.</description><subject>Continuous valuation</subject><subject>General Topology</subject><subject>Kantorovich-Rubinstein quasi-metric</subject><subject>Mathematics</subject><subject>Probability</subject><subject>Quasi-metric</subject><subject>Weak topology</subject><issn>0166-8641</issn><issn>1879-3207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKu_wMtePWzNxzbZCh6KqC0WBD_wGLLZCU3ZJjXJLvjv3XXFo6eZeed9B-ZB6JLgGcGEX-9myR98M6OYkl4RXLAjNCGlWOSMYnGMJr2L5yUvyCk6i3GHMSYLQSfo40m55IPvrN7mL21lXUxgXfbZqmjzPaRgdczWN9nrQWmImTfZHlRsQ98rVw-z9i5Z1_o2Zp1qWpWsd_EcnRjVRLj4rVP0_nD_drfKN8-P67vlJtespCmfK1XU3ACDslKsLik3xtBCcIMLKDRXXGhdVpXu9wID05rQOaGcQY1pQQs2RVfj3a1q5CHYvQpf0isrV8uNHDTMSMmZIB3pvWz06uBjDGD-AgTLgaPcyR-OcuAoR4596nZMQf9GZyHIqC04DbUNoJOsvf03_w2gVX4f</recordid><startdate>20210515</startdate><enddate>20210515</enddate><creator>Goubault-Larrecq, Jean</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5879-3304</orcidid></search><sort><creationdate>20210515</creationdate><title>Kantorovich-Rubinstein quasi-metrics I: Spaces of measures and of continuous valuations</title><author>Goubault-Larrecq, Jean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-5aa4d6fe3e8ba3d826fff2476f04e4c6a67cc8bbce8b70e3cc1251263ed024243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Continuous valuation</topic><topic>General Topology</topic><topic>Kantorovich-Rubinstein quasi-metric</topic><topic>Mathematics</topic><topic>Probability</topic><topic>Quasi-metric</topic><topic>Weak topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goubault-Larrecq, Jean</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Topology and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goubault-Larrecq, Jean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kantorovich-Rubinstein quasi-metrics I: Spaces of measures and of continuous valuations</atitle><jtitle>Topology and its applications</jtitle><date>2021-05-15</date><risdate>2021</risdate><volume>295</volume><spage>107673</spage><pages>107673-</pages><artnum>107673</artnum><issn>0166-8641</issn><eissn>1879-3207</eissn><abstract>We show that the space of subprobability measures, equivalently of subprobability continuous valuations, on an algebraic (resp., continuous) complete quasi-metric space is again algebraic (resp., continuous) and complete, when equipped with the Kantorovich-Rubinstein quasi-metrics dKR (unbounded) or dKRa (bounded), themselves asymmetric forms of the well-known Kantorovich-Rubinstein metric. We also show that the dKR-Scott and the dKRa-Scott topologies then coincide with the weak topology. We obtain similar results for spaces of probability measures, equivalently of probability continuous valuations, with the dKRa quasi-metrics, or with the dKR quasi-metric under an additional rootedness assumption.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.topol.2021.107673</doi><orcidid>https://orcid.org/0000-0001-5879-3304</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-8641
ispartof Topology and its applications, 2021-05, Vol.295, p.107673, Article 107673
issn 0166-8641
1879-3207
language eng
recordid cdi_hal_primary_oai_HAL_hal_03186371v1
source Elsevier ScienceDirect Journals
subjects Continuous valuation
General Topology
Kantorovich-Rubinstein quasi-metric
Mathematics
Probability
Quasi-metric
Weak topology
title Kantorovich-Rubinstein quasi-metrics I: Spaces of measures and of continuous valuations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T10%3A28%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kantorovich-Rubinstein%20quasi-metrics%20I:%20Spaces%20of%20measures%20and%20of%20continuous%20valuations&rft.jtitle=Topology%20and%20its%20applications&rft.au=Goubault-Larrecq,%20Jean&rft.date=2021-05-15&rft.volume=295&rft.spage=107673&rft.pages=107673-&rft.artnum=107673&rft.issn=0166-8641&rft.eissn=1879-3207&rft_id=info:doi/10.1016/j.topol.2021.107673&rft_dat=%3Celsevier_hal_p%3ES0166864121000870%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0166864121000870&rfr_iscdi=true