Kantorovich-Rubinstein quasi-metrics I: Spaces of measures and of continuous valuations

We show that the space of subprobability measures, equivalently of subprobability continuous valuations, on an algebraic (resp., continuous) complete quasi-metric space is again algebraic (resp., continuous) and complete, when equipped with the Kantorovich-Rubinstein quasi-metrics dKR (unbounded) or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Topology and its applications 2021-05, Vol.295, p.107673, Article 107673
1. Verfasser: Goubault-Larrecq, Jean
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the space of subprobability measures, equivalently of subprobability continuous valuations, on an algebraic (resp., continuous) complete quasi-metric space is again algebraic (resp., continuous) and complete, when equipped with the Kantorovich-Rubinstein quasi-metrics dKR (unbounded) or dKRa (bounded), themselves asymmetric forms of the well-known Kantorovich-Rubinstein metric. We also show that the dKR-Scott and the dKRa-Scott topologies then coincide with the weak topology. We obtain similar results for spaces of probability measures, equivalently of probability continuous valuations, with the dKRa quasi-metrics, or with the dKR quasi-metric under an additional rootedness assumption.
ISSN:0166-8641
1879-3207
DOI:10.1016/j.topol.2021.107673