Quantum Information in the Protein Codes, $3$-manifolds and the Kummer Surface

Every protein consists of a linear sequence over an alphabet of $20$ letters/amino acids. The sequence unfolds in the $3$-dimensional space through secondary (local foldings), tertiary (bonds) and quaternary (disjoint multiple) structures. The mere existence of the genetic code for the $20$ letters...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2021-06, Vol.13
Hauptverfasser: Fang, Fang, Planat, Michel, Aschheim, Raymond, Amaral, Marcelo M, Irwin, Klee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Every protein consists of a linear sequence over an alphabet of $20$ letters/amino acids. The sequence unfolds in the $3$-dimensional space through secondary (local foldings), tertiary (bonds) and quaternary (disjoint multiple) structures. The mere existence of the genetic code for the $20$ letters of the linear chain could be predicted with the (informationally complete) irreducible characters of the finite group $G_n:=\mathbb{Z}_n \rtimes 2O$ (with $n=5$ or $7$ and $2O$ the binary octahedral group) in our previous two papers. It turns out that some quaternary structures of protein complexes display $n$-fold symmetries. We propose an approach of secondary structures based on free group theory. Our results are compared to other approaches of predicting secondary structures of proteins in terms of $\alpha$ helices, $\beta$ sheets and coils, or more refined techniques. It is shown that the secondary structure of proteins shows similarities to the structure of some hyperbolic $3$-manifolds. The hyperbolic $3$-manifold of smallest volume --Gieseking manifold--, some other $3$ manifolds and Grothendieck's cartographic group are singled out as tentative models of such secondary structures. For the quaternary structure, there are links to the Kummer surface.
ISSN:2073-8994
2073-8994
DOI:10.20944/preprints202103.0612.v1