The dimensional Brunn–Minkowski inequality in Gauss space
Let γn be the standard Gaussian measure on Rn. We prove that for every symmetric convex sets K,L in Rn and every λ∈(0,1),γn(λK+(1−λ)L)1n⩾λγn(K)1n+(1−λ)γn(L)1n, thus settling a problem raised by Gardner and Zvavitch (2010). This is the Gaussian analogue of the classical Brunn–Minkowski inequality for...
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 2021-03, Vol.280 (6), p.108914, Article 108914 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 108914 |
container_title | Journal of functional analysis |
container_volume | 280 |
creator | Eskenazis, Alexandros Moschidis, Georgios |
description | Let γn be the standard Gaussian measure on Rn. We prove that for every symmetric convex sets K,L in Rn and every λ∈(0,1),γn(λK+(1−λ)L)1n⩾λγn(K)1n+(1−λ)γn(L)1n, thus settling a problem raised by Gardner and Zvavitch (2010). This is the Gaussian analogue of the classical Brunn–Minkowski inequality for the Lebesgue measure. We also show that, for a fixed λ∈(0,1), equality is attained if and only if K=L. |
doi_str_mv | 10.1016/j.jfa.2020.108914 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03182077v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022123620304572</els_id><sourcerecordid>S0022123620304572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-9e00fc82e40c7e5528779bf100c5105e681e7546228bc2b2fc89b6b99438e68a3</originalsourceid><addsrcrecordid>eNp9kL9OwzAQhy0EEqXwAGxZGVLunD921KlU0CIVsZTZctyL6jR1StwWdeMdeEOehERBjEx3Z_--k-5j7BZhhIDpfTkqCz3iwLtZZhifsQFCloYgZHTOBgCch8ij9JJdeV8CIKZxMmDj5ZqCld2S87Z2ugoemoNz359fL9Zt6g-_sYF19H7Qld2f2jaY6YP3gd9pQ9fsotCVp5vfOmRvT4_L6TxcvM6ep5NFaCIR78OMAAojOcVgBCUJl0JkeYEAJkFIKJVIIolTzmVueM7bbJaneZbFkWw_dTRkd_3eta7UrrFb3ZxUra2aTxaqe4MIJQchjthmsc-apva-oeIPQFCdKVWq1pTqTKneVMuMe4baI46WGuWNJWdoZRsye7Wq7T_0D11cb98</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The dimensional Brunn–Minkowski inequality in Gauss space</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Eskenazis, Alexandros ; Moschidis, Georgios</creator><creatorcontrib>Eskenazis, Alexandros ; Moschidis, Georgios</creatorcontrib><description>Let γn be the standard Gaussian measure on Rn. We prove that for every symmetric convex sets K,L in Rn and every λ∈(0,1),γn(λK+(1−λ)L)1n⩾λγn(K)1n+(1−λ)γn(L)1n, thus settling a problem raised by Gardner and Zvavitch (2010). This is the Gaussian analogue of the classical Brunn–Minkowski inequality for the Lebesgue measure. We also show that, for a fixed λ∈(0,1), equality is attained if and only if K=L.</description><identifier>ISSN: 0022-1236</identifier><identifier>EISSN: 1096-0783</identifier><identifier>DOI: 10.1016/j.jfa.2020.108914</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Brunn–Minkowski inequality ; Gardner–Zvavitch problem ; Gaussian measure ; Mathematics ; Symmetric convex sets</subject><ispartof>Journal of functional analysis, 2021-03, Vol.280 (6), p.108914, Article 108914</ispartof><rights>2020 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-9e00fc82e40c7e5528779bf100c5105e681e7546228bc2b2fc89b6b99438e68a3</citedby><cites>FETCH-LOGICAL-c374t-9e00fc82e40c7e5528779bf100c5105e681e7546228bc2b2fc89b6b99438e68a3</cites><orcidid>0000-0002-1601-8307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jfa.2020.108914$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-03182077$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Eskenazis, Alexandros</creatorcontrib><creatorcontrib>Moschidis, Georgios</creatorcontrib><title>The dimensional Brunn–Minkowski inequality in Gauss space</title><title>Journal of functional analysis</title><description>Let γn be the standard Gaussian measure on Rn. We prove that for every symmetric convex sets K,L in Rn and every λ∈(0,1),γn(λK+(1−λ)L)1n⩾λγn(K)1n+(1−λ)γn(L)1n, thus settling a problem raised by Gardner and Zvavitch (2010). This is the Gaussian analogue of the classical Brunn–Minkowski inequality for the Lebesgue measure. We also show that, for a fixed λ∈(0,1), equality is attained if and only if K=L.</description><subject>Brunn–Minkowski inequality</subject><subject>Gardner–Zvavitch problem</subject><subject>Gaussian measure</subject><subject>Mathematics</subject><subject>Symmetric convex sets</subject><issn>0022-1236</issn><issn>1096-0783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kL9OwzAQhy0EEqXwAGxZGVLunD921KlU0CIVsZTZctyL6jR1StwWdeMdeEOehERBjEx3Z_--k-5j7BZhhIDpfTkqCz3iwLtZZhifsQFCloYgZHTOBgCch8ij9JJdeV8CIKZxMmDj5ZqCld2S87Z2ugoemoNz359fL9Zt6g-_sYF19H7Qld2f2jaY6YP3gd9pQ9fsotCVp5vfOmRvT4_L6TxcvM6ep5NFaCIR78OMAAojOcVgBCUJl0JkeYEAJkFIKJVIIolTzmVueM7bbJaneZbFkWw_dTRkd_3eta7UrrFb3ZxUra2aTxaqe4MIJQchjthmsc-apva-oeIPQFCdKVWq1pTqTKneVMuMe4baI46WGuWNJWdoZRsye7Wq7T_0D11cb98</recordid><startdate>20210315</startdate><enddate>20210315</enddate><creator>Eskenazis, Alexandros</creator><creator>Moschidis, Georgios</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1601-8307</orcidid></search><sort><creationdate>20210315</creationdate><title>The dimensional Brunn–Minkowski inequality in Gauss space</title><author>Eskenazis, Alexandros ; Moschidis, Georgios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-9e00fc82e40c7e5528779bf100c5105e681e7546228bc2b2fc89b6b99438e68a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Brunn–Minkowski inequality</topic><topic>Gardner–Zvavitch problem</topic><topic>Gaussian measure</topic><topic>Mathematics</topic><topic>Symmetric convex sets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eskenazis, Alexandros</creatorcontrib><creatorcontrib>Moschidis, Georgios</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of functional analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eskenazis, Alexandros</au><au>Moschidis, Georgios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The dimensional Brunn–Minkowski inequality in Gauss space</atitle><jtitle>Journal of functional analysis</jtitle><date>2021-03-15</date><risdate>2021</risdate><volume>280</volume><issue>6</issue><spage>108914</spage><pages>108914-</pages><artnum>108914</artnum><issn>0022-1236</issn><eissn>1096-0783</eissn><abstract>Let γn be the standard Gaussian measure on Rn. We prove that for every symmetric convex sets K,L in Rn and every λ∈(0,1),γn(λK+(1−λ)L)1n⩾λγn(K)1n+(1−λ)γn(L)1n, thus settling a problem raised by Gardner and Zvavitch (2010). This is the Gaussian analogue of the classical Brunn–Minkowski inequality for the Lebesgue measure. We also show that, for a fixed λ∈(0,1), equality is attained if and only if K=L.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jfa.2020.108914</doi><orcidid>https://orcid.org/0000-0002-1601-8307</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1236 |
ispartof | Journal of functional analysis, 2021-03, Vol.280 (6), p.108914, Article 108914 |
issn | 0022-1236 1096-0783 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03182077v1 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Brunn–Minkowski inequality Gardner–Zvavitch problem Gaussian measure Mathematics Symmetric convex sets |
title | The dimensional Brunn–Minkowski inequality in Gauss space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A38%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20dimensional%20Brunn%E2%80%93Minkowski%20inequality%20in%20Gauss%20space&rft.jtitle=Journal%20of%20functional%20analysis&rft.au=Eskenazis,%20Alexandros&rft.date=2021-03-15&rft.volume=280&rft.issue=6&rft.spage=108914&rft.pages=108914-&rft.artnum=108914&rft.issn=0022-1236&rft.eissn=1096-0783&rft_id=info:doi/10.1016/j.jfa.2020.108914&rft_dat=%3Celsevier_hal_p%3ES0022123620304572%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022123620304572&rfr_iscdi=true |