The dimensional Brunn–Minkowski inequality in Gauss space
Let γn be the standard Gaussian measure on Rn. We prove that for every symmetric convex sets K,L in Rn and every λ∈(0,1),γn(λK+(1−λ)L)1n⩾λγn(K)1n+(1−λ)γn(L)1n, thus settling a problem raised by Gardner and Zvavitch (2010). This is the Gaussian analogue of the classical Brunn–Minkowski inequality for...
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 2021-03, Vol.280 (6), p.108914, Article 108914 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let γn be the standard Gaussian measure on Rn. We prove that for every symmetric convex sets K,L in Rn and every λ∈(0,1),γn(λK+(1−λ)L)1n⩾λγn(K)1n+(1−λ)γn(L)1n, thus settling a problem raised by Gardner and Zvavitch (2010). This is the Gaussian analogue of the classical Brunn–Minkowski inequality for the Lebesgue measure. We also show that, for a fixed λ∈(0,1), equality is attained if and only if K=L. |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1016/j.jfa.2020.108914 |