The dimensional Brunn–Minkowski inequality in Gauss space

Let γn be the standard Gaussian measure on Rn. We prove that for every symmetric convex sets K,L in Rn and every λ∈(0,1),γn(λK+(1−λ)L)1n⩾λγn(K)1n+(1−λ)γn(L)1n, thus settling a problem raised by Gardner and Zvavitch (2010). This is the Gaussian analogue of the classical Brunn–Minkowski inequality for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 2021-03, Vol.280 (6), p.108914, Article 108914
Hauptverfasser: Eskenazis, Alexandros, Moschidis, Georgios
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let γn be the standard Gaussian measure on Rn. We prove that for every symmetric convex sets K,L in Rn and every λ∈(0,1),γn(λK+(1−λ)L)1n⩾λγn(K)1n+(1−λ)γn(L)1n, thus settling a problem raised by Gardner and Zvavitch (2010). This is the Gaussian analogue of the classical Brunn–Minkowski inequality for the Lebesgue measure. We also show that, for a fixed λ∈(0,1), equality is attained if and only if K=L.
ISSN:0022-1236
1096-0783
DOI:10.1016/j.jfa.2020.108914