Fast Convergence of Dynamical ADMM via Time Scaling of Damped Inertial Dynamics

In this paper, we propose in a Hilbertian setting a second-order time-continuous dynamic system with fast convergence guarantees to solve structured convex minimization problems with an affine constraint. The system is associated with the augmented Lagrangian formulation of the minimization problem....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2022-06, Vol.193 (1-3), p.704-736
Hauptverfasser: Attouch, Hedy, Chbani, Zaki, Fadili, Jalal, Riahi, Hassan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 736
container_issue 1-3
container_start_page 704
container_title Journal of optimization theory and applications
container_volume 193
creator Attouch, Hedy
Chbani, Zaki
Fadili, Jalal
Riahi, Hassan
description In this paper, we propose in a Hilbertian setting a second-order time-continuous dynamic system with fast convergence guarantees to solve structured convex minimization problems with an affine constraint. The system is associated with the augmented Lagrangian formulation of the minimization problem. The corresponding dynamics brings into play three general time-varying parameters, each with specific properties, and which are, respectively, associated with viscous damping, extrapolation and temporal scaling. By appropriately adjusting these parameters, we develop a Lyapunov analysis which provides fast convergence properties of the values and of the feasibility gap. These results will naturally pave the way for developing corresponding accelerated ADMM algorithms, obtained by temporal discretization.
doi_str_mv 10.1007/s10957-021-01859-2
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03177752v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664215936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-f68739735412a7dcb4d82f622c86343430ca657e9f0e9a58fec148031413ecfb3</originalsourceid><addsrcrecordid>eNp9kEtPAjEUhRujiYj-AVdNXLmo9jGdtksCIiQQFuK6KaXFIczDdiDh31sYojtzF_fm5DsnNweAR4JfCMbiNRKsuECYEoSJ5ArRK9AjXDBEpZDXoIcxpYhRpm7BXYxbjLGSIuuBxdjEFg7r6uDCxlXWwdrD0bEyZWHNDg5G8zk8FAYui9LBjyQV1eaMmLJxazitXGiLBF4s8R7ceLOL7uGy--Bz_LYcTtBs8T4dDmbIMiVa5HMp0sF4RqgRa7vK1pL6nFIrc5alwdbkXDjlsVOGS-8sySRmJCPMWb9iffDc5X6ZnW5CUZpw1LUp9GQw0yctsUIITg8ksU8d24T6e-9iq7f1PlTpPU3zPKOEK5YninaUDXWMwfnfWIL1qWTdlaxTyfpcsqbJxDpTTHC1ceEv-h_XD-CgfCY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664215936</pqid></control><display><type>article</type><title>Fast Convergence of Dynamical ADMM via Time Scaling of Damped Inertial Dynamics</title><source>Springer Nature - Complete Springer Journals</source><creator>Attouch, Hedy ; Chbani, Zaki ; Fadili, Jalal ; Riahi, Hassan</creator><creatorcontrib>Attouch, Hedy ; Chbani, Zaki ; Fadili, Jalal ; Riahi, Hassan</creatorcontrib><description>In this paper, we propose in a Hilbertian setting a second-order time-continuous dynamic system with fast convergence guarantees to solve structured convex minimization problems with an affine constraint. The system is associated with the augmented Lagrangian formulation of the minimization problem. The corresponding dynamics brings into play three general time-varying parameters, each with specific properties, and which are, respectively, associated with viscous damping, extrapolation and temporal scaling. By appropriately adjusting these parameters, we develop a Lyapunov analysis which provides fast convergence properties of the values and of the feasibility gap. These results will naturally pave the way for developing corresponding accelerated ADMM algorithms, obtained by temporal discretization.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-021-01859-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Applications of Mathematics ; Approximation ; Calculus of Variations and Optimal Control; Optimization ; Computer Science ; Convergence ; Convex analysis ; Dynamical Systems ; Engineering ; Lagrange multiplier ; Machine Learning ; Mathematics ; Mathematics and Statistics ; Methods ; Operations Research/Decision Theory ; Optimization ; Optimization and Control ; Parameters ; Signal and Image Processing ; Statistics ; Theory of Computation ; Viscosity ; Viscous damping</subject><ispartof>Journal of optimization theory and applications, 2022-06, Vol.193 (1-3), p.704-736</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-f68739735412a7dcb4d82f622c86343430ca657e9f0e9a58fec148031413ecfb3</citedby><cites>FETCH-LOGICAL-c397t-f68739735412a7dcb4d82f622c86343430ca657e9f0e9a58fec148031413ecfb3</cites><orcidid>0000-0002-8165-7578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10957-021-01859-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10957-021-01859-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03177752$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Attouch, Hedy</creatorcontrib><creatorcontrib>Chbani, Zaki</creatorcontrib><creatorcontrib>Fadili, Jalal</creatorcontrib><creatorcontrib>Riahi, Hassan</creatorcontrib><title>Fast Convergence of Dynamical ADMM via Time Scaling of Damped Inertial Dynamics</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>In this paper, we propose in a Hilbertian setting a second-order time-continuous dynamic system with fast convergence guarantees to solve structured convex minimization problems with an affine constraint. The system is associated with the augmented Lagrangian formulation of the minimization problem. The corresponding dynamics brings into play three general time-varying parameters, each with specific properties, and which are, respectively, associated with viscous damping, extrapolation and temporal scaling. By appropriately adjusting these parameters, we develop a Lyapunov analysis which provides fast convergence properties of the values and of the feasibility gap. These results will naturally pave the way for developing corresponding accelerated ADMM algorithms, obtained by temporal discretization.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Approximation</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Convex analysis</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Lagrange multiplier</subject><subject>Machine Learning</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Optimization and Control</subject><subject>Parameters</subject><subject>Signal and Image Processing</subject><subject>Statistics</subject><subject>Theory of Computation</subject><subject>Viscosity</subject><subject>Viscous damping</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtPAjEUhRujiYj-AVdNXLmo9jGdtksCIiQQFuK6KaXFIczDdiDh31sYojtzF_fm5DsnNweAR4JfCMbiNRKsuECYEoSJ5ArRK9AjXDBEpZDXoIcxpYhRpm7BXYxbjLGSIuuBxdjEFg7r6uDCxlXWwdrD0bEyZWHNDg5G8zk8FAYui9LBjyQV1eaMmLJxazitXGiLBF4s8R7ceLOL7uGy--Bz_LYcTtBs8T4dDmbIMiVa5HMp0sF4RqgRa7vK1pL6nFIrc5alwdbkXDjlsVOGS-8sySRmJCPMWb9iffDc5X6ZnW5CUZpw1LUp9GQw0yctsUIITg8ksU8d24T6e-9iq7f1PlTpPU3zPKOEK5YninaUDXWMwfnfWIL1qWTdlaxTyfpcsqbJxDpTTHC1ceEv-h_XD-CgfCY</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Attouch, Hedy</creator><creator>Chbani, Zaki</creator><creator>Fadili, Jalal</creator><creator>Riahi, Hassan</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8165-7578</orcidid></search><sort><creationdate>20220601</creationdate><title>Fast Convergence of Dynamical ADMM via Time Scaling of Damped Inertial Dynamics</title><author>Attouch, Hedy ; Chbani, Zaki ; Fadili, Jalal ; Riahi, Hassan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-f68739735412a7dcb4d82f622c86343430ca657e9f0e9a58fec148031413ecfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Approximation</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Convex analysis</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Lagrange multiplier</topic><topic>Machine Learning</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Optimization and Control</topic><topic>Parameters</topic><topic>Signal and Image Processing</topic><topic>Statistics</topic><topic>Theory of Computation</topic><topic>Viscosity</topic><topic>Viscous damping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Attouch, Hedy</creatorcontrib><creatorcontrib>Chbani, Zaki</creatorcontrib><creatorcontrib>Fadili, Jalal</creatorcontrib><creatorcontrib>Riahi, Hassan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Attouch, Hedy</au><au>Chbani, Zaki</au><au>Fadili, Jalal</au><au>Riahi, Hassan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Convergence of Dynamical ADMM via Time Scaling of Damped Inertial Dynamics</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>193</volume><issue>1-3</issue><spage>704</spage><epage>736</epage><pages>704-736</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><abstract>In this paper, we propose in a Hilbertian setting a second-order time-continuous dynamic system with fast convergence guarantees to solve structured convex minimization problems with an affine constraint. The system is associated with the augmented Lagrangian formulation of the minimization problem. The corresponding dynamics brings into play three general time-varying parameters, each with specific properties, and which are, respectively, associated with viscous damping, extrapolation and temporal scaling. By appropriately adjusting these parameters, we develop a Lyapunov analysis which provides fast convergence properties of the values and of the feasibility gap. These results will naturally pave the way for developing corresponding accelerated ADMM algorithms, obtained by temporal discretization.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10957-021-01859-2</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0002-8165-7578</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3239
ispartof Journal of optimization theory and applications, 2022-06, Vol.193 (1-3), p.704-736
issn 0022-3239
1573-2878
language eng
recordid cdi_hal_primary_oai_HAL_hal_03177752v1
source Springer Nature - Complete Springer Journals
subjects Algorithms
Applications of Mathematics
Approximation
Calculus of Variations and Optimal Control
Optimization
Computer Science
Convergence
Convex analysis
Dynamical Systems
Engineering
Lagrange multiplier
Machine Learning
Mathematics
Mathematics and Statistics
Methods
Operations Research/Decision Theory
Optimization
Optimization and Control
Parameters
Signal and Image Processing
Statistics
Theory of Computation
Viscosity
Viscous damping
title Fast Convergence of Dynamical ADMM via Time Scaling of Damped Inertial Dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A41%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Convergence%20of%20Dynamical%20ADMM%20via%20Time%20Scaling%20of%20Damped%20Inertial%20Dynamics&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Attouch,%20Hedy&rft.date=2022-06-01&rft.volume=193&rft.issue=1-3&rft.spage=704&rft.epage=736&rft.pages=704-736&rft.issn=0022-3239&rft.eissn=1573-2878&rft_id=info:doi/10.1007/s10957-021-01859-2&rft_dat=%3Cproquest_hal_p%3E2664215936%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2664215936&rft_id=info:pmid/&rfr_iscdi=true