Fast Convergence of Dynamical ADMM via Time Scaling of Damped Inertial Dynamics
In this paper, we propose in a Hilbertian setting a second-order time-continuous dynamic system with fast convergence guarantees to solve structured convex minimization problems with an affine constraint. The system is associated with the augmented Lagrangian formulation of the minimization problem....
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 2022-06, Vol.193 (1-3), p.704-736 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 736 |
---|---|
container_issue | 1-3 |
container_start_page | 704 |
container_title | Journal of optimization theory and applications |
container_volume | 193 |
creator | Attouch, Hedy Chbani, Zaki Fadili, Jalal Riahi, Hassan |
description | In this paper, we propose in a Hilbertian setting a second-order time-continuous dynamic system with fast convergence guarantees to solve structured convex minimization problems with an affine constraint. The system is associated with the augmented Lagrangian formulation of the minimization problem. The corresponding dynamics brings into play three general time-varying parameters, each with specific properties, and which are, respectively, associated with viscous damping, extrapolation and temporal scaling. By appropriately adjusting these parameters, we develop a Lyapunov analysis which provides fast convergence properties of the values and of the feasibility gap. These results will naturally pave the way for developing corresponding accelerated ADMM algorithms, obtained by temporal discretization. |
doi_str_mv | 10.1007/s10957-021-01859-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03177752v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664215936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-f68739735412a7dcb4d82f622c86343430ca657e9f0e9a58fec148031413ecfb3</originalsourceid><addsrcrecordid>eNp9kEtPAjEUhRujiYj-AVdNXLmo9jGdtksCIiQQFuK6KaXFIczDdiDh31sYojtzF_fm5DsnNweAR4JfCMbiNRKsuECYEoSJ5ArRK9AjXDBEpZDXoIcxpYhRpm7BXYxbjLGSIuuBxdjEFg7r6uDCxlXWwdrD0bEyZWHNDg5G8zk8FAYui9LBjyQV1eaMmLJxazitXGiLBF4s8R7ceLOL7uGy--Bz_LYcTtBs8T4dDmbIMiVa5HMp0sF4RqgRa7vK1pL6nFIrc5alwdbkXDjlsVOGS-8sySRmJCPMWb9iffDc5X6ZnW5CUZpw1LUp9GQw0yctsUIITg8ksU8d24T6e-9iq7f1PlTpPU3zPKOEK5YninaUDXWMwfnfWIL1qWTdlaxTyfpcsqbJxDpTTHC1ceEv-h_XD-CgfCY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664215936</pqid></control><display><type>article</type><title>Fast Convergence of Dynamical ADMM via Time Scaling of Damped Inertial Dynamics</title><source>Springer Nature - Complete Springer Journals</source><creator>Attouch, Hedy ; Chbani, Zaki ; Fadili, Jalal ; Riahi, Hassan</creator><creatorcontrib>Attouch, Hedy ; Chbani, Zaki ; Fadili, Jalal ; Riahi, Hassan</creatorcontrib><description>In this paper, we propose in a Hilbertian setting a second-order time-continuous dynamic system with fast convergence guarantees to solve structured convex minimization problems with an affine constraint. The system is associated with the augmented Lagrangian formulation of the minimization problem. The corresponding dynamics brings into play three general time-varying parameters, each with specific properties, and which are, respectively, associated with viscous damping, extrapolation and temporal scaling. By appropriately adjusting these parameters, we develop a Lyapunov analysis which provides fast convergence properties of the values and of the feasibility gap. These results will naturally pave the way for developing corresponding accelerated ADMM algorithms, obtained by temporal discretization.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-021-01859-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Applications of Mathematics ; Approximation ; Calculus of Variations and Optimal Control; Optimization ; Computer Science ; Convergence ; Convex analysis ; Dynamical Systems ; Engineering ; Lagrange multiplier ; Machine Learning ; Mathematics ; Mathematics and Statistics ; Methods ; Operations Research/Decision Theory ; Optimization ; Optimization and Control ; Parameters ; Signal and Image Processing ; Statistics ; Theory of Computation ; Viscosity ; Viscous damping</subject><ispartof>Journal of optimization theory and applications, 2022-06, Vol.193 (1-3), p.704-736</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-f68739735412a7dcb4d82f622c86343430ca657e9f0e9a58fec148031413ecfb3</citedby><cites>FETCH-LOGICAL-c397t-f68739735412a7dcb4d82f622c86343430ca657e9f0e9a58fec148031413ecfb3</cites><orcidid>0000-0002-8165-7578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10957-021-01859-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10957-021-01859-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03177752$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Attouch, Hedy</creatorcontrib><creatorcontrib>Chbani, Zaki</creatorcontrib><creatorcontrib>Fadili, Jalal</creatorcontrib><creatorcontrib>Riahi, Hassan</creatorcontrib><title>Fast Convergence of Dynamical ADMM via Time Scaling of Damped Inertial Dynamics</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>In this paper, we propose in a Hilbertian setting a second-order time-continuous dynamic system with fast convergence guarantees to solve structured convex minimization problems with an affine constraint. The system is associated with the augmented Lagrangian formulation of the minimization problem. The corresponding dynamics brings into play three general time-varying parameters, each with specific properties, and which are, respectively, associated with viscous damping, extrapolation and temporal scaling. By appropriately adjusting these parameters, we develop a Lyapunov analysis which provides fast convergence properties of the values and of the feasibility gap. These results will naturally pave the way for developing corresponding accelerated ADMM algorithms, obtained by temporal discretization.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Approximation</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Convex analysis</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Lagrange multiplier</subject><subject>Machine Learning</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Optimization and Control</subject><subject>Parameters</subject><subject>Signal and Image Processing</subject><subject>Statistics</subject><subject>Theory of Computation</subject><subject>Viscosity</subject><subject>Viscous damping</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtPAjEUhRujiYj-AVdNXLmo9jGdtksCIiQQFuK6KaXFIczDdiDh31sYojtzF_fm5DsnNweAR4JfCMbiNRKsuECYEoSJ5ArRK9AjXDBEpZDXoIcxpYhRpm7BXYxbjLGSIuuBxdjEFg7r6uDCxlXWwdrD0bEyZWHNDg5G8zk8FAYui9LBjyQV1eaMmLJxazitXGiLBF4s8R7ceLOL7uGy--Bz_LYcTtBs8T4dDmbIMiVa5HMp0sF4RqgRa7vK1pL6nFIrc5alwdbkXDjlsVOGS-8sySRmJCPMWb9iffDc5X6ZnW5CUZpw1LUp9GQw0yctsUIITg8ksU8d24T6e-9iq7f1PlTpPU3zPKOEK5YninaUDXWMwfnfWIL1qWTdlaxTyfpcsqbJxDpTTHC1ceEv-h_XD-CgfCY</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Attouch, Hedy</creator><creator>Chbani, Zaki</creator><creator>Fadili, Jalal</creator><creator>Riahi, Hassan</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8165-7578</orcidid></search><sort><creationdate>20220601</creationdate><title>Fast Convergence of Dynamical ADMM via Time Scaling of Damped Inertial Dynamics</title><author>Attouch, Hedy ; Chbani, Zaki ; Fadili, Jalal ; Riahi, Hassan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-f68739735412a7dcb4d82f622c86343430ca657e9f0e9a58fec148031413ecfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Approximation</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Convex analysis</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Lagrange multiplier</topic><topic>Machine Learning</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Optimization and Control</topic><topic>Parameters</topic><topic>Signal and Image Processing</topic><topic>Statistics</topic><topic>Theory of Computation</topic><topic>Viscosity</topic><topic>Viscous damping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Attouch, Hedy</creatorcontrib><creatorcontrib>Chbani, Zaki</creatorcontrib><creatorcontrib>Fadili, Jalal</creatorcontrib><creatorcontrib>Riahi, Hassan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Attouch, Hedy</au><au>Chbani, Zaki</au><au>Fadili, Jalal</au><au>Riahi, Hassan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Convergence of Dynamical ADMM via Time Scaling of Damped Inertial Dynamics</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>193</volume><issue>1-3</issue><spage>704</spage><epage>736</epage><pages>704-736</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><abstract>In this paper, we propose in a Hilbertian setting a second-order time-continuous dynamic system with fast convergence guarantees to solve structured convex minimization problems with an affine constraint. The system is associated with the augmented Lagrangian formulation of the minimization problem. The corresponding dynamics brings into play three general time-varying parameters, each with specific properties, and which are, respectively, associated with viscous damping, extrapolation and temporal scaling. By appropriately adjusting these parameters, we develop a Lyapunov analysis which provides fast convergence properties of the values and of the feasibility gap. These results will naturally pave the way for developing corresponding accelerated ADMM algorithms, obtained by temporal discretization.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10957-021-01859-2</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0002-8165-7578</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3239 |
ispartof | Journal of optimization theory and applications, 2022-06, Vol.193 (1-3), p.704-736 |
issn | 0022-3239 1573-2878 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03177752v1 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Applications of Mathematics Approximation Calculus of Variations and Optimal Control Optimization Computer Science Convergence Convex analysis Dynamical Systems Engineering Lagrange multiplier Machine Learning Mathematics Mathematics and Statistics Methods Operations Research/Decision Theory Optimization Optimization and Control Parameters Signal and Image Processing Statistics Theory of Computation Viscosity Viscous damping |
title | Fast Convergence of Dynamical ADMM via Time Scaling of Damped Inertial Dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A41%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Convergence%20of%20Dynamical%20ADMM%20via%20Time%20Scaling%20of%20Damped%20Inertial%20Dynamics&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Attouch,%20Hedy&rft.date=2022-06-01&rft.volume=193&rft.issue=1-3&rft.spage=704&rft.epage=736&rft.pages=704-736&rft.issn=0022-3239&rft.eissn=1573-2878&rft_id=info:doi/10.1007/s10957-021-01859-2&rft_dat=%3Cproquest_hal_p%3E2664215936%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2664215936&rft_id=info:pmid/&rfr_iscdi=true |