Fast Convergence of Dynamical ADMM via Time Scaling of Damped Inertial Dynamics

In this paper, we propose in a Hilbertian setting a second-order time-continuous dynamic system with fast convergence guarantees to solve structured convex minimization problems with an affine constraint. The system is associated with the augmented Lagrangian formulation of the minimization problem....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2022-06, Vol.193 (1-3), p.704-736
Hauptverfasser: Attouch, Hedy, Chbani, Zaki, Fadili, Jalal, Riahi, Hassan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose in a Hilbertian setting a second-order time-continuous dynamic system with fast convergence guarantees to solve structured convex minimization problems with an affine constraint. The system is associated with the augmented Lagrangian formulation of the minimization problem. The corresponding dynamics brings into play three general time-varying parameters, each with specific properties, and which are, respectively, associated with viscous damping, extrapolation and temporal scaling. By appropriately adjusting these parameters, we develop a Lyapunov analysis which provides fast convergence properties of the values and of the feasibility gap. These results will naturally pave the way for developing corresponding accelerated ADMM algorithms, obtained by temporal discretization.
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-021-01859-2