H^2$$-regularity for a two-dimensional transmission problem with geometric constraint

The $$H^2$$ H 2 -regularity of variational solutions to a two-dimensional transmission problem with geometric constraint is investigated, in particular when part of the interface becomes part of the outer boundary of the domain due to the saturation of the geometric constraint. In such a situation,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2022-11, Vol.302 (3), p.1879-1904
Hauptverfasser: Laurençot, Philippe, Walker, Christoph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The $$H^2$$ H 2 -regularity of variational solutions to a two-dimensional transmission problem with geometric constraint is investigated, in particular when part of the interface becomes part of the outer boundary of the domain due to the saturation of the geometric constraint. In such a situation, the domain includes some non-Lipschitz subdomains with cusp points, but it is shown that this feature does not lead to a regularity breakdown. Moreover, continuous dependence of the solutions with respect to the domain is established.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-022-03115-3