THE LIMIT alpha - 0 OF THE alpha-EULER EQUATIONS IN THE HALF-PLANE WITH NO-SLIP BOUNDARY CONDITIONS AND VORTEX SHEET INITIAL DATA

In this article we study the limit when alpha -> 0 of solutions to the alpha-Euler system in the half-plane, with no-slip boundary conditions. We establish the existence of subsequences converging to a weak solution of the 2D incompressible Euler equations, assuming nonnegative initial vorticitie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on mathematical analysis 2020-01, Vol.52 (5), p.5257-5286
Hauptverfasser: Busuioc, Adriana V., Iftimie, Dragos, Lopes Filho, Milton D., Nussenzveig Lopes, Helena J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article we study the limit when alpha -> 0 of solutions to the alpha-Euler system in the half-plane, with no-slip boundary conditions. We establish the existence of subsequences converging to a weak solution of the 2D incompressible Euler equations, assuming nonnegative initial vorticities in the space of bounded Radon measures in H-1. This result extends the analysis done in [A. V. Busuioc and D. Iftimie, Nonlinearity, 30 (2017), pp. 4534-4557; M. C. Lopes Filho et al., Phys. D, 292-293 (2015), pp. 51-61]. It requires a substantially distinct approach, analogous to that used for Delort's theorem, and a new detailed investigation of the relation between (no-slip) filtered velocity and potential vorticity in the half-plane.
ISSN:0036-1410
1095-7154
DOI:10.1137/19M1303721