THE LIMIT alpha - 0 OF THE alpha-EULER EQUATIONS IN THE HALF-PLANE WITH NO-SLIP BOUNDARY CONDITIONS AND VORTEX SHEET INITIAL DATA
In this article we study the limit when alpha -> 0 of solutions to the alpha-Euler system in the half-plane, with no-slip boundary conditions. We establish the existence of subsequences converging to a weak solution of the 2D incompressible Euler equations, assuming nonnegative initial vorticitie...
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 2020-01, Vol.52 (5), p.5257-5286 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article we study the limit when alpha -> 0 of solutions to the alpha-Euler system in the half-plane, with no-slip boundary conditions. We establish the existence of subsequences converging to a weak solution of the 2D incompressible Euler equations, assuming nonnegative initial vorticities in the space of bounded Radon measures in H-1. This result extends the analysis done in [A. V. Busuioc and D. Iftimie, Nonlinearity, 30 (2017), pp. 4534-4557; M. C. Lopes Filho et al., Phys. D, 292-293 (2015), pp. 51-61]. It requires a substantially distinct approach, analogous to that used for Delort's theorem, and a new detailed investigation of the relation between (no-slip) filtered velocity and potential vorticity in the half-plane. |
---|---|
ISSN: | 0036-1410 1095-7154 |
DOI: | 10.1137/19M1303721 |