On strong and almost sure local limit theorems for a probabilistic model of the Dickman distribution
Let { Z k } k ≥ 1 denote a sequence of independent Bernoulli random variables defined by P ( Z k = 1) = 1 /k = 1 − P ( Z k = 0) ( k ≥ 1) and put T n ≔ ∑ 1 ≤ k ≤ n kZ k . It is known that T n /n convergesweakly to a real random variable D with density proportional to the Dickman function, defi...
Gespeichert in:
Veröffentlicht in: | Lithuanian mathematical journal 2021-07, Vol.61 (3), p.301-311 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let {
Z
k
}
k
≥ 1
denote a sequence of independent Bernoulli random variables defined by
P
(
Z
k
= 1) = 1
/k
= 1
−
P
(
Z
k
= 0) (
k
≥ 1) and put
T
n
≔ ∑
1 ≤
k
≤
n
kZ
k
. It is known that
T
n
/n
convergesweakly to a real random variable
D
with density proportional to the Dickman function, defined by the delay-differential equation
u
ϱ ′ (
u
) + ϱ(
u
− 1) = 0 (
u
> 1) with initial condition ϱ(
u
) = 1(0 ≤
u
≤ 1). Improving on earlier work, we propose asymptotic formulae with remainders for the corresponding local and almost sure limit theorems:
∑
m
≥
0
P
T
n
=
m
−
e
−
γ
n
ϱ
m
n
=
2
log
n
π
2
n
1
+
O
1
log
2
n
n
→
∞
,
and
∀
u
>
0
,
∑
n
≤
N
,
T
n
=
un
1
=
e
−
γ
ϱ
u
log
N
+
O
log
N
2
/
3
+
o
1
a
.
s
N
→
∞
,
where
γ
denotes Euler’s constant. |
---|---|
ISSN: | 0363-1672 1573-8825 |
DOI: | 10.1007/s10986-021-09529-6 |