On the Incompressible Limit for a Tumour Growth Model incorporating Convective Effects

In this work we study a tissue growth model with applications to tumour growth. The model is based on that of Perthame, Quirós, and Vázquez proposed in 2014 but incorporates the advective effects caused, for instance, by the presence of nutrients, oxygen, or, possibly, as a result of self-propulsion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications on pure and applied mathematics 2023-10
Hauptverfasser: David, Noemi, Schmidtchen, Markus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work we study a tissue growth model with applications to tumour growth. The model is based on that of Perthame, Quirós, and Vázquez proposed in 2014 but incorporates the advective effects caused, for instance, by the presence of nutrients, oxygen, or, possibly, as a result of self-propulsion. The main result of this work is the incompressible limit of this model which builds a bridge between the density-based model and a geometry free-boundary problem by passing to a singular limit in the pressure law. The limiting objects are then proven to be unique.
ISSN:0010-3640
1097-0312