Path large deviations for stochastic evolutions driven by the square of a Gaussian process

Many dynamics are random processes with increments given by a quadratic form of a fast Gaussian process. We find that the rate function which describes path large deviations can be computed from the large interval asymptotic of a certain Fredholm determinant. The latter can be evaluated explicitly u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical mechanics 2021-02
Hauptverfasser: Bouchet, Freddy, Tribe, Roger, Zaboronski, Oleg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of statistical mechanics
container_volume
creator Bouchet, Freddy
Tribe, Roger
Zaboronski, Oleg
description Many dynamics are random processes with increments given by a quadratic form of a fast Gaussian process. We find that the rate function which describes path large deviations can be computed from the large interval asymptotic of a certain Fredholm determinant. The latter can be evaluated explicitly using Widom's theorem which generalizes the celebrated Szego-Kac formula to the multi-dimensional case. This provides a large class of dynamics with explicit path large deviation functionals. Inspired by problems in hydrodynamics and atmosphere dynamics, we present the simplest example of the emergence of metastability for such a process.
format Article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03152230v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03152230v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_03152230v13</originalsourceid><addsrcrecordid>eNqVijsPgjAURhujifj4D3d1ICkFlNUYH4ODg5MLuUKRmkqxtzTh3xujg6vTd3LON2BBtEpEmCbLbPjDYzYhunMeC55kAbuc0NWg0d4klNIrdMo0BJWxQM4UNZJTBUhvdPcppVVeNnDtwdUS6NmhlWAqQNhjR6SwgdaaQhLN2KhCTXL-3Slb7LbnzSGsUeetVQ-0fW5Q5Yf1MX87HkepEDH3UfzP9wXVD0gb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Path large deviations for stochastic evolutions driven by the square of a Gaussian process</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Bouchet, Freddy ; Tribe, Roger ; Zaboronski, Oleg</creator><creatorcontrib>Bouchet, Freddy ; Tribe, Roger ; Zaboronski, Oleg</creatorcontrib><description>Many dynamics are random processes with increments given by a quadratic form of a fast Gaussian process. We find that the rate function which describes path large deviations can be computed from the large interval asymptotic of a certain Fredholm determinant. The latter can be evaluated explicitly using Widom's theorem which generalizes the celebrated Szego-Kac formula to the multi-dimensional case. This provides a large class of dynamics with explicit path large deviation functionals. Inspired by problems in hydrodynamics and atmosphere dynamics, we present the simplest example of the emergence of metastability for such a process.</description><identifier>ISSN: 1742-5468</identifier><identifier>EISSN: 1742-5468</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Condensed Matter ; Fluid Dynamics ; Mathematical Physics ; Mathematics ; Nonlinear Sciences ; Physics ; Statistical Mechanics</subject><ispartof>Journal of statistical mechanics, 2021-02</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1623-0818 ; 0000-0002-1623-0818</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03152230$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bouchet, Freddy</creatorcontrib><creatorcontrib>Tribe, Roger</creatorcontrib><creatorcontrib>Zaboronski, Oleg</creatorcontrib><title>Path large deviations for stochastic evolutions driven by the square of a Gaussian process</title><title>Journal of statistical mechanics</title><description>Many dynamics are random processes with increments given by a quadratic form of a fast Gaussian process. We find that the rate function which describes path large deviations can be computed from the large interval asymptotic of a certain Fredholm determinant. The latter can be evaluated explicitly using Widom's theorem which generalizes the celebrated Szego-Kac formula to the multi-dimensional case. This provides a large class of dynamics with explicit path large deviation functionals. Inspired by problems in hydrodynamics and atmosphere dynamics, we present the simplest example of the emergence of metastability for such a process.</description><subject>Condensed Matter</subject><subject>Fluid Dynamics</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Nonlinear Sciences</subject><subject>Physics</subject><subject>Statistical Mechanics</subject><issn>1742-5468</issn><issn>1742-5468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqVijsPgjAURhujifj4D3d1ICkFlNUYH4ODg5MLuUKRmkqxtzTh3xujg6vTd3LON2BBtEpEmCbLbPjDYzYhunMeC55kAbuc0NWg0d4klNIrdMo0BJWxQM4UNZJTBUhvdPcppVVeNnDtwdUS6NmhlWAqQNhjR6SwgdaaQhLN2KhCTXL-3Slb7LbnzSGsUeetVQ-0fW5Q5Yf1MX87HkepEDH3UfzP9wXVD0gb</recordid><startdate>20210225</startdate><enddate>20210225</enddate><creator>Bouchet, Freddy</creator><creator>Tribe, Roger</creator><creator>Zaboronski, Oleg</creator><general>IOP Publishing</general><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1623-0818</orcidid><orcidid>https://orcid.org/0000-0002-1623-0818</orcidid></search><sort><creationdate>20210225</creationdate><title>Path large deviations for stochastic evolutions driven by the square of a Gaussian process</title><author>Bouchet, Freddy ; Tribe, Roger ; Zaboronski, Oleg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_03152230v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Condensed Matter</topic><topic>Fluid Dynamics</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Nonlinear Sciences</topic><topic>Physics</topic><topic>Statistical Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouchet, Freddy</creatorcontrib><creatorcontrib>Tribe, Roger</creatorcontrib><creatorcontrib>Zaboronski, Oleg</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of statistical mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouchet, Freddy</au><au>Tribe, Roger</au><au>Zaboronski, Oleg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Path large deviations for stochastic evolutions driven by the square of a Gaussian process</atitle><jtitle>Journal of statistical mechanics</jtitle><date>2021-02-25</date><risdate>2021</risdate><issn>1742-5468</issn><eissn>1742-5468</eissn><abstract>Many dynamics are random processes with increments given by a quadratic form of a fast Gaussian process. We find that the rate function which describes path large deviations can be computed from the large interval asymptotic of a certain Fredholm determinant. The latter can be evaluated explicitly using Widom's theorem which generalizes the celebrated Szego-Kac formula to the multi-dimensional case. This provides a large class of dynamics with explicit path large deviation functionals. Inspired by problems in hydrodynamics and atmosphere dynamics, we present the simplest example of the emergence of metastability for such a process.</abstract><pub>IOP Publishing</pub><orcidid>https://orcid.org/0000-0002-1623-0818</orcidid><orcidid>https://orcid.org/0000-0002-1623-0818</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-5468
ispartof Journal of statistical mechanics, 2021-02
issn 1742-5468
1742-5468
language eng
recordid cdi_hal_primary_oai_HAL_hal_03152230v1
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Condensed Matter
Fluid Dynamics
Mathematical Physics
Mathematics
Nonlinear Sciences
Physics
Statistical Mechanics
title Path large deviations for stochastic evolutions driven by the square of a Gaussian process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A25%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Path%20large%20deviations%20for%20stochastic%20evolutions%20driven%20by%20the%20square%20of%20a%20Gaussian%20process&rft.jtitle=Journal%20of%20statistical%20mechanics&rft.au=Bouchet,%20Freddy&rft.date=2021-02-25&rft.issn=1742-5468&rft.eissn=1742-5468&rft_id=info:doi/&rft_dat=%3Chal%3Eoai_HAL_hal_03152230v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true