Path large deviations for stochastic evolutions driven by the square of a Gaussian process

Many dynamics are random processes with increments given by a quadratic form of a fast Gaussian process. We find that the rate function which describes path large deviations can be computed from the large interval asymptotic of a certain Fredholm determinant. The latter can be evaluated explicitly u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical mechanics 2021-02
Hauptverfasser: Bouchet, Freddy, Tribe, Roger, Zaboronski, Oleg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many dynamics are random processes with increments given by a quadratic form of a fast Gaussian process. We find that the rate function which describes path large deviations can be computed from the large interval asymptotic of a certain Fredholm determinant. The latter can be evaluated explicitly using Widom's theorem which generalizes the celebrated Szego-Kac formula to the multi-dimensional case. This provides a large class of dynamics with explicit path large deviation functionals. Inspired by problems in hydrodynamics and atmosphere dynamics, we present the simplest example of the emergence of metastability for such a process.
ISSN:1742-5468
1742-5468