Regularity of solutions of elliptic problems with a curved fracture

We consider the Laplace equation with a right-hand side concentrated on a curved fracture of class Cm+2 for some nonnegative integer m (i.e., a sort of Dirac mass). We show that the solution belongs to a weighted Sobolev space of order m, the weight being the distance to this fracture. Our proof rel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2017-03, Vol.447 (2), p.908-932
Hauptverfasser: Ariche, S., De Coster, C., Nicaise, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the Laplace equation with a right-hand side concentrated on a curved fracture of class Cm+2 for some nonnegative integer m (i.e., a sort of Dirac mass). We show that the solution belongs to a weighted Sobolev space of order m, the weight being the distance to this fracture. Our proof relies on a priori estimates in a dihedron or a cone with singularities for elliptic operators with variable coefficients. In both cases, such an estimate is obtained using a dyadic covering of the domain.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2016.10.021