Regularity of solutions of elliptic problems with a curved fracture
We consider the Laplace equation with a right-hand side concentrated on a curved fracture of class Cm+2 for some nonnegative integer m (i.e., a sort of Dirac mass). We show that the solution belongs to a weighted Sobolev space of order m, the weight being the distance to this fracture. Our proof rel...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2017-03, Vol.447 (2), p.908-932 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the Laplace equation with a right-hand side concentrated on a curved fracture of class Cm+2 for some nonnegative integer m (i.e., a sort of Dirac mass). We show that the solution belongs to a weighted Sobolev space of order m, the weight being the distance to this fracture. Our proof relies on a priori estimates in a dihedron or a cone with singularities for elliptic operators with variable coefficients. In both cases, such an estimate is obtained using a dyadic covering of the domain. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2016.10.021 |