Flat Almost Complex Surfaces in the Homogeneous Nearly Kähler S3×S3

By employing a nice adapted frame we prove a Bonnet-type existence and uniqueness theorem for almost complex surfaces in the homogeneous nearly Kähler manifold  S 3 × S 3 . The proof uses a local correspondence between almost complex surfaces in  S 3 × S 3 and surfaces in  R 3 that satisfy the Wente...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Resultate der Mathematik 2018-03, Vol.73 (1)
Hauptverfasser: Dioos, Bart, Li, Haizhong, Ma, Hui, Vrancken, Luc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By employing a nice adapted frame we prove a Bonnet-type existence and uniqueness theorem for almost complex surfaces in the homogeneous nearly Kähler manifold  S 3 × S 3 . The proof uses a local correspondence between almost complex surfaces in  S 3 × S 3 and surfaces in  R 3 that satisfy the Wente H -surface equation. Furthermore we give a complete classification of flat almost complex surfaces in the homogeneous nearly Kähler S 3 × S 3 .
ISSN:1422-6383
1420-9012
DOI:10.1007/s00025-018-0784-y