Flat Almost Complex Surfaces in the Homogeneous Nearly Kähler S3×S3
By employing a nice adapted frame we prove a Bonnet-type existence and uniqueness theorem for almost complex surfaces in the homogeneous nearly Kähler manifold S 3 × S 3 . The proof uses a local correspondence between almost complex surfaces in S 3 × S 3 and surfaces in R 3 that satisfy the Wente...
Gespeichert in:
Veröffentlicht in: | Resultate der Mathematik 2018-03, Vol.73 (1) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By employing a nice adapted frame we prove a Bonnet-type existence and uniqueness theorem for almost complex surfaces in the homogeneous nearly Kähler manifold
S
3
×
S
3
. The proof uses a local correspondence between almost complex surfaces in
S
3
×
S
3
and surfaces in
R
3
that satisfy the Wente
H
-surface equation. Furthermore we give a complete classification of flat almost complex surfaces in the homogeneous nearly Kähler
S
3
×
S
3
. |
---|---|
ISSN: | 1422-6383 1420-9012 |
DOI: | 10.1007/s00025-018-0784-y |