Unified description of turbulent entrainment
We present a mathematical description of turbulent entrainment that is applicable to free-shear problems that evolve in space, time or both. Defining the global entrainment velocity $\bar {V}_g$ to be the fluid motion across an isosurface of an averaged scalar, we find that for a slender flow, $\bar...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2021-02, Vol.908, Article A12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a mathematical description of turbulent entrainment that is applicable to free-shear problems that evolve in space, time or both. Defining the global entrainment velocity $\bar {V}_g$ to be the fluid motion across an isosurface of an averaged scalar, we find that for a slender flow, $\bar {V}_g=\bar {u}_\zeta - \bar {\textrm {D}}h_t/\bar {\textrm {D}}t$, where $\bar {\textrm {D}}/\bar {\textrm {D}} t$ is the material derivative of the average flow field and $\bar {u}_\zeta$ is the average velocity perpendicular to the flow direction across the interface located at $\zeta =h_t$. The description is shown to reproduce well-known results for the axisymmetric jet, the planar wake and the temporal jet, and provides a clear link between the local (small scale) and global (integral) descriptions of turbulent entrainment. Application to unsteady jets/plumes demonstrates that, under unsteady conditions, the entrainment coefficient $\alpha$ no longer only captures entrainment of ambient fluid, but also time-dependency effects due to the loss of self-similarity. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2020.836 |