A Survey on Distributed Graph Pattern Matching in Massive Graphs

Besides its NP-completeness, the strict constraints of subgraph isomorphism are making it impractical for graph pattern matching (GPM) in the context of big data. As a result, relaxed GPM models have emerged as they yield interesting results in a polynomial time. However, massive graphs generated by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM computing surveys 2021-04, Vol.54 (2), p.1-35
Hauptverfasser: Bouhenni, Sarra, Yahiaoui, Saïd, Nouali-Taboudjemat, Nadia, Kheddouci, Hamamache
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35
container_issue 2
container_start_page 1
container_title ACM computing surveys
container_volume 54
creator Bouhenni, Sarra
Yahiaoui, Saïd
Nouali-Taboudjemat, Nadia
Kheddouci, Hamamache
description Besides its NP-completeness, the strict constraints of subgraph isomorphism are making it impractical for graph pattern matching (GPM) in the context of big data. As a result, relaxed GPM models have emerged as they yield interesting results in a polynomial time. However, massive graphs generated by mostly social networks require a distributed storing and processing of the data over multiple machines, thus, requiring GPM to be revised by adopting new paradigms of big graphs processing, e.g., Think-Like-A-Vertex and its derivatives. This article discusses and proposes a classification of distributed GPM approaches with a narrow focus on the relaxed models.
doi_str_mv 10.1145/3439724
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03141901v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2648606731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-7b6cb23fb40eb2708887a5e78ca7047d28c20d823aa5b124cf36d2d209e182633</originalsourceid><addsrcrecordid>eNo90FFLwzAQB_AgCs4pfoWAD-JD9ZJLk-zNMXUKEwX1OaRp6jpmO5N0sG_vSodPdxw__hx_Qi4Z3DIm8jsUOFFcHJERy3OVKRTsmIwAJWSAAKfkLMYVAHDB5IjcT-lHF7Z-R9uGPtQxhbroki_pPNjNkr7blHxo6KtNblk337Tu9xjrrR9EPCcnlV1Hf3GYY_L19Pg5e84Wb_OX2XSROeSQMlVIV3CsCgG-4Aq01srmXmlnFQhVcu04lJqjtXnBuHAVypKXHCaeaS4Rx-RmyF3atdmE-seGnWltbZ6nC9PfAJlgE2BbtrdXg92E9rfzMZlV24Vm_57hUmgJUmGvrgflQhtj8NV_LAPTV2kOVeIf9QRiCg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648606731</pqid></control><display><type>article</type><title>A Survey on Distributed Graph Pattern Matching in Massive Graphs</title><source>ACM Digital Library Complete</source><creator>Bouhenni, Sarra ; Yahiaoui, Saïd ; Nouali-Taboudjemat, Nadia ; Kheddouci, Hamamache</creator><creatorcontrib>Bouhenni, Sarra ; Yahiaoui, Saïd ; Nouali-Taboudjemat, Nadia ; Kheddouci, Hamamache</creatorcontrib><description>Besides its NP-completeness, the strict constraints of subgraph isomorphism are making it impractical for graph pattern matching (GPM) in the context of big data. As a result, relaxed GPM models have emerged as they yield interesting results in a polynomial time. However, massive graphs generated by mostly social networks require a distributed storing and processing of the data over multiple machines, thus, requiring GPM to be revised by adopting new paradigms of big graphs processing, e.g., Think-Like-A-Vertex and its derivatives. This article discusses and proposes a classification of distributed GPM approaches with a narrow focus on the relaxed models.</description><identifier>ISSN: 0360-0300</identifier><identifier>EISSN: 1557-7341</identifier><identifier>DOI: 10.1145/3439724</identifier><language>eng</language><publisher>Baltimore: Association for Computing Machinery</publisher><subject>Big Data ; Computer Science ; Distributed, Parallel, and Cluster Computing ; Graph matching ; Graph theory ; Graphs ; Isomorphism ; Pattern matching ; Polynomials ; Social networks</subject><ispartof>ACM computing surveys, 2021-04, Vol.54 (2), p.1-35</ispartof><rights>Copyright Association for Computing Machinery Mar 2022</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-7b6cb23fb40eb2708887a5e78ca7047d28c20d823aa5b124cf36d2d209e182633</citedby><cites>FETCH-LOGICAL-c320t-7b6cb23fb40eb2708887a5e78ca7047d28c20d823aa5b124cf36d2d209e182633</cites><orcidid>0000-0002-1091-3909 ; 0000-0002-1772-0579</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03141901$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bouhenni, Sarra</creatorcontrib><creatorcontrib>Yahiaoui, Saïd</creatorcontrib><creatorcontrib>Nouali-Taboudjemat, Nadia</creatorcontrib><creatorcontrib>Kheddouci, Hamamache</creatorcontrib><title>A Survey on Distributed Graph Pattern Matching in Massive Graphs</title><title>ACM computing surveys</title><description>Besides its NP-completeness, the strict constraints of subgraph isomorphism are making it impractical for graph pattern matching (GPM) in the context of big data. As a result, relaxed GPM models have emerged as they yield interesting results in a polynomial time. However, massive graphs generated by mostly social networks require a distributed storing and processing of the data over multiple machines, thus, requiring GPM to be revised by adopting new paradigms of big graphs processing, e.g., Think-Like-A-Vertex and its derivatives. This article discusses and proposes a classification of distributed GPM approaches with a narrow focus on the relaxed models.</description><subject>Big Data</subject><subject>Computer Science</subject><subject>Distributed, Parallel, and Cluster Computing</subject><subject>Graph matching</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Isomorphism</subject><subject>Pattern matching</subject><subject>Polynomials</subject><subject>Social networks</subject><issn>0360-0300</issn><issn>1557-7341</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo90FFLwzAQB_AgCs4pfoWAD-JD9ZJLk-zNMXUKEwX1OaRp6jpmO5N0sG_vSodPdxw__hx_Qi4Z3DIm8jsUOFFcHJERy3OVKRTsmIwAJWSAAKfkLMYVAHDB5IjcT-lHF7Z-R9uGPtQxhbroki_pPNjNkr7blHxo6KtNblk337Tu9xjrrR9EPCcnlV1Hf3GYY_L19Pg5e84Wb_OX2XSROeSQMlVIV3CsCgG-4Aq01srmXmlnFQhVcu04lJqjtXnBuHAVypKXHCaeaS4Rx-RmyF3atdmE-seGnWltbZ6nC9PfAJlgE2BbtrdXg92E9rfzMZlV24Vm_57hUmgJUmGvrgflQhtj8NV_LAPTV2kOVeIf9QRiCg</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Bouhenni, Sarra</creator><creator>Yahiaoui, Saïd</creator><creator>Nouali-Taboudjemat, Nadia</creator><creator>Kheddouci, Hamamache</creator><general>Association for Computing Machinery</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1091-3909</orcidid><orcidid>https://orcid.org/0000-0002-1772-0579</orcidid></search><sort><creationdate>20210401</creationdate><title>A Survey on Distributed Graph Pattern Matching in Massive Graphs</title><author>Bouhenni, Sarra ; Yahiaoui, Saïd ; Nouali-Taboudjemat, Nadia ; Kheddouci, Hamamache</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-7b6cb23fb40eb2708887a5e78ca7047d28c20d823aa5b124cf36d2d209e182633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Big Data</topic><topic>Computer Science</topic><topic>Distributed, Parallel, and Cluster Computing</topic><topic>Graph matching</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Isomorphism</topic><topic>Pattern matching</topic><topic>Polynomials</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouhenni, Sarra</creatorcontrib><creatorcontrib>Yahiaoui, Saïd</creatorcontrib><creatorcontrib>Nouali-Taboudjemat, Nadia</creatorcontrib><creatorcontrib>Kheddouci, Hamamache</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>ACM computing surveys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouhenni, Sarra</au><au>Yahiaoui, Saïd</au><au>Nouali-Taboudjemat, Nadia</au><au>Kheddouci, Hamamache</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Survey on Distributed Graph Pattern Matching in Massive Graphs</atitle><jtitle>ACM computing surveys</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>54</volume><issue>2</issue><spage>1</spage><epage>35</epage><pages>1-35</pages><issn>0360-0300</issn><eissn>1557-7341</eissn><abstract>Besides its NP-completeness, the strict constraints of subgraph isomorphism are making it impractical for graph pattern matching (GPM) in the context of big data. As a result, relaxed GPM models have emerged as they yield interesting results in a polynomial time. However, massive graphs generated by mostly social networks require a distributed storing and processing of the data over multiple machines, thus, requiring GPM to be revised by adopting new paradigms of big graphs processing, e.g., Think-Like-A-Vertex and its derivatives. This article discusses and proposes a classification of distributed GPM approaches with a narrow focus on the relaxed models.</abstract><cop>Baltimore</cop><pub>Association for Computing Machinery</pub><doi>10.1145/3439724</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0002-1091-3909</orcidid><orcidid>https://orcid.org/0000-0002-1772-0579</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0360-0300
ispartof ACM computing surveys, 2021-04, Vol.54 (2), p.1-35
issn 0360-0300
1557-7341
language eng
recordid cdi_hal_primary_oai_HAL_hal_03141901v1
source ACM Digital Library Complete
subjects Big Data
Computer Science
Distributed, Parallel, and Cluster Computing
Graph matching
Graph theory
Graphs
Isomorphism
Pattern matching
Polynomials
Social networks
title A Survey on Distributed Graph Pattern Matching in Massive Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A03%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Survey%20on%20Distributed%20Graph%20Pattern%20Matching%20in%20Massive%20Graphs&rft.jtitle=ACM%20computing%20surveys&rft.au=Bouhenni,%20Sarra&rft.date=2021-04-01&rft.volume=54&rft.issue=2&rft.spage=1&rft.epage=35&rft.pages=1-35&rft.issn=0360-0300&rft.eissn=1557-7341&rft_id=info:doi/10.1145/3439724&rft_dat=%3Cproquest_hal_p%3E2648606731%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2648606731&rft_id=info:pmid/&rfr_iscdi=true