A Survey on Distributed Graph Pattern Matching in Massive Graphs
Besides its NP-completeness, the strict constraints of subgraph isomorphism are making it impractical for graph pattern matching (GPM) in the context of big data. As a result, relaxed GPM models have emerged as they yield interesting results in a polynomial time. However, massive graphs generated by...
Gespeichert in:
Veröffentlicht in: | ACM computing surveys 2021-04, Vol.54 (2), p.1-35 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Besides its NP-completeness, the strict constraints of subgraph isomorphism are making it impractical for graph pattern matching (GPM) in the context of big data. As a result, relaxed GPM models have emerged as they yield interesting results in a polynomial time. However, massive graphs generated by mostly social networks require a distributed storing and processing of the data over multiple machines, thus, requiring GPM to be revised by adopting new paradigms of big graphs processing, e.g., Think-Like-A-Vertex and its derivatives. This article discusses and proposes a classification of distributed GPM approaches with a narrow focus on the relaxed models. |
---|---|
ISSN: | 0360-0300 1557-7341 |
DOI: | 10.1145/3439724 |