The Dirichlet problem for a prescribed anisotropic mean curvature equation: existence, uniqueness and regularity of solutions

We discuss existence, uniqueness, regularity and boundary behaviour of solutions of the Dirichlet problem for the prescribed anisotropic mean curvature equation−div(∇u/1+|∇u|2)=−au+b/1+|∇u|2, where a,b>0 are given parameters and Ω is a bounded Lipschitz domain in RN. This equation appears in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Differential Equations 2016-03, Vol.260 (5), p.4572-4618
Hauptverfasser: Corsato, Chiara, De Coster, Colette, Omari, Pierpaolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4618
container_issue 5
container_start_page 4572
container_title Journal of Differential Equations
container_volume 260
creator Corsato, Chiara
De Coster, Colette
Omari, Pierpaolo
description We discuss existence, uniqueness, regularity and boundary behaviour of solutions of the Dirichlet problem for the prescribed anisotropic mean curvature equation−div(∇u/1+|∇u|2)=−au+b/1+|∇u|2, where a,b>0 are given parameters and Ω is a bounded Lipschitz domain in RN. This equation appears in the modeling theory of capillarity phenomena for compressible fluids and in the description of the geometry of the human cornea.
doi_str_mv 10.1016/j.jde.2015.11.024
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03135815v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022039615006300</els_id><sourcerecordid>S0022039615006300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-af92553850edf7b82a5e0539a94c8baad5979ce8479f924465a07f22dc927dcd3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9i8IpFgO3ESw1TxVaRKLGW2HPtCXaVxazsVHfjvJCpiZDq9p_c56R6ErilJKaHF3TpdG0gZoTylNCUsP0ETSgRJWJmxUzQhhLGEZKI4RxchrAmhlBd8gr6XK8BP1lu9aiHirXd1CxvcOI_VkCBob2swWHU2uOjd1mq8AdVh3fu9ir0HDLteReu6ewxfNkToNNzivrO7HjoIYUAN9vDZt8rbeMCuwcG1_UiES3TWqDbA1e-coo-X5-XjPFm8v749zhaJzso8JqoRjPOs4gRMU9YVUxwIz4QSua5qpQwXpdBQ5aUYmnlecEXKhjGjBSuNNtkU3RzvrlQrt95ulD9Ip6yczxZy3JGMZryifE-HLj12tXcheGj-AErk6Fqu5eBajq4lpXJwPTAPRwaGJ_YWvAzajiKM9aCjNM7-Q_8AM4KJew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Dirichlet problem for a prescribed anisotropic mean curvature equation: existence, uniqueness and regularity of solutions</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Corsato, Chiara ; De Coster, Colette ; Omari, Pierpaolo</creator><creatorcontrib>Corsato, Chiara ; De Coster, Colette ; Omari, Pierpaolo</creatorcontrib><description>We discuss existence, uniqueness, regularity and boundary behaviour of solutions of the Dirichlet problem for the prescribed anisotropic mean curvature equation−div(∇u/1+|∇u|2)=−au+b/1+|∇u|2, where a,b&gt;0 are given parameters and Ω is a bounded Lipschitz domain in RN. This equation appears in the modeling theory of capillarity phenomena for compressible fluids and in the description of the geometry of the human cornea.</description><identifier>ISSN: 0022-0396</identifier><identifier>EISSN: 1090-2732</identifier><identifier>DOI: 10.1016/j.jde.2015.11.024</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Boundary behaviour ; Bounded variation function ; Dirichlet boundary condition ; Existence ; Mathematics ; Positive solution ; Prescribed anisotropic mean curvature equation ; Regularity ; Uniqueness ; Variational methods</subject><ispartof>Journal of Differential Equations, 2016-03, Vol.260 (5), p.4572-4618</ispartof><rights>2015 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-af92553850edf7b82a5e0539a94c8baad5979ce8479f924465a07f22dc927dcd3</citedby><cites>FETCH-LOGICAL-c374t-af92553850edf7b82a5e0539a94c8baad5979ce8479f924465a07f22dc927dcd3</cites><orcidid>0000-0002-5230-7704</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022039615006300$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://uphf.hal.science/hal-03135815$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Corsato, Chiara</creatorcontrib><creatorcontrib>De Coster, Colette</creatorcontrib><creatorcontrib>Omari, Pierpaolo</creatorcontrib><title>The Dirichlet problem for a prescribed anisotropic mean curvature equation: existence, uniqueness and regularity of solutions</title><title>Journal of Differential Equations</title><description>We discuss existence, uniqueness, regularity and boundary behaviour of solutions of the Dirichlet problem for the prescribed anisotropic mean curvature equation−div(∇u/1+|∇u|2)=−au+b/1+|∇u|2, where a,b&gt;0 are given parameters and Ω is a bounded Lipschitz domain in RN. This equation appears in the modeling theory of capillarity phenomena for compressible fluids and in the description of the geometry of the human cornea.</description><subject>Boundary behaviour</subject><subject>Bounded variation function</subject><subject>Dirichlet boundary condition</subject><subject>Existence</subject><subject>Mathematics</subject><subject>Positive solution</subject><subject>Prescribed anisotropic mean curvature equation</subject><subject>Regularity</subject><subject>Uniqueness</subject><subject>Variational methods</subject><issn>0022-0396</issn><issn>1090-2732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9i8IpFgO3ESw1TxVaRKLGW2HPtCXaVxazsVHfjvJCpiZDq9p_c56R6ErilJKaHF3TpdG0gZoTylNCUsP0ETSgRJWJmxUzQhhLGEZKI4RxchrAmhlBd8gr6XK8BP1lu9aiHirXd1CxvcOI_VkCBob2swWHU2uOjd1mq8AdVh3fu9ir0HDLteReu6ewxfNkToNNzivrO7HjoIYUAN9vDZt8rbeMCuwcG1_UiES3TWqDbA1e-coo-X5-XjPFm8v749zhaJzso8JqoRjPOs4gRMU9YVUxwIz4QSua5qpQwXpdBQ5aUYmnlecEXKhjGjBSuNNtkU3RzvrlQrt95ulD9Ip6yczxZy3JGMZryifE-HLj12tXcheGj-AErk6Fqu5eBajq4lpXJwPTAPRwaGJ_YWvAzajiKM9aCjNM7-Q_8AM4KJew</recordid><startdate>20160305</startdate><enddate>20160305</enddate><creator>Corsato, Chiara</creator><creator>De Coster, Colette</creator><creator>Omari, Pierpaolo</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5230-7704</orcidid></search><sort><creationdate>20160305</creationdate><title>The Dirichlet problem for a prescribed anisotropic mean curvature equation: existence, uniqueness and regularity of solutions</title><author>Corsato, Chiara ; De Coster, Colette ; Omari, Pierpaolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-af92553850edf7b82a5e0539a94c8baad5979ce8479f924465a07f22dc927dcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Boundary behaviour</topic><topic>Bounded variation function</topic><topic>Dirichlet boundary condition</topic><topic>Existence</topic><topic>Mathematics</topic><topic>Positive solution</topic><topic>Prescribed anisotropic mean curvature equation</topic><topic>Regularity</topic><topic>Uniqueness</topic><topic>Variational methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Corsato, Chiara</creatorcontrib><creatorcontrib>De Coster, Colette</creatorcontrib><creatorcontrib>Omari, Pierpaolo</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of Differential Equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Corsato, Chiara</au><au>De Coster, Colette</au><au>Omari, Pierpaolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Dirichlet problem for a prescribed anisotropic mean curvature equation: existence, uniqueness and regularity of solutions</atitle><jtitle>Journal of Differential Equations</jtitle><date>2016-03-05</date><risdate>2016</risdate><volume>260</volume><issue>5</issue><spage>4572</spage><epage>4618</epage><pages>4572-4618</pages><issn>0022-0396</issn><eissn>1090-2732</eissn><abstract>We discuss existence, uniqueness, regularity and boundary behaviour of solutions of the Dirichlet problem for the prescribed anisotropic mean curvature equation−div(∇u/1+|∇u|2)=−au+b/1+|∇u|2, where a,b&gt;0 are given parameters and Ω is a bounded Lipschitz domain in RN. This equation appears in the modeling theory of capillarity phenomena for compressible fluids and in the description of the geometry of the human cornea.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jde.2015.11.024</doi><tpages>47</tpages><orcidid>https://orcid.org/0000-0002-5230-7704</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0396
ispartof Journal of Differential Equations, 2016-03, Vol.260 (5), p.4572-4618
issn 0022-0396
1090-2732
language eng
recordid cdi_hal_primary_oai_HAL_hal_03135815v1
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Boundary behaviour
Bounded variation function
Dirichlet boundary condition
Existence
Mathematics
Positive solution
Prescribed anisotropic mean curvature equation
Regularity
Uniqueness
Variational methods
title The Dirichlet problem for a prescribed anisotropic mean curvature equation: existence, uniqueness and regularity of solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A15%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Dirichlet%20problem%20for%20a%20prescribed%20anisotropic%20mean%20curvature%20equation:%20existence,%20uniqueness%20and%20regularity%20of%20solutions&rft.jtitle=Journal%20of%20Differential%20Equations&rft.au=Corsato,%20Chiara&rft.date=2016-03-05&rft.volume=260&rft.issue=5&rft.spage=4572&rft.epage=4618&rft.pages=4572-4618&rft.issn=0022-0396&rft.eissn=1090-2732&rft_id=info:doi/10.1016/j.jde.2015.11.024&rft_dat=%3Celsevier_hal_p%3ES0022039615006300%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022039615006300&rfr_iscdi=true