The Dirichlet problem for a prescribed anisotropic mean curvature equation: existence, uniqueness and regularity of solutions
We discuss existence, uniqueness, regularity and boundary behaviour of solutions of the Dirichlet problem for the prescribed anisotropic mean curvature equation−div(∇u/1+|∇u|2)=−au+b/1+|∇u|2, where a,b>0 are given parameters and Ω is a bounded Lipschitz domain in RN. This equation appears in the...
Gespeichert in:
Veröffentlicht in: | Journal of Differential Equations 2016-03, Vol.260 (5), p.4572-4618 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We discuss existence, uniqueness, regularity and boundary behaviour of solutions of the Dirichlet problem for the prescribed anisotropic mean curvature equation−div(∇u/1+|∇u|2)=−au+b/1+|∇u|2, where a,b>0 are given parameters and Ω is a bounded Lipschitz domain in RN. This equation appears in the modeling theory of capillarity phenomena for compressible fluids and in the description of the geometry of the human cornea. |
---|---|
ISSN: | 0022-0396 1090-2732 |
DOI: | 10.1016/j.jde.2015.11.024 |