The Dirichlet problem for a prescribed anisotropic mean curvature equation: existence, uniqueness and regularity of solutions

We discuss existence, uniqueness, regularity and boundary behaviour of solutions of the Dirichlet problem for the prescribed anisotropic mean curvature equation−div(∇u/1+|∇u|2)=−au+b/1+|∇u|2, where a,b>0 are given parameters and Ω is a bounded Lipschitz domain in RN. This equation appears in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Differential Equations 2016-03, Vol.260 (5), p.4572-4618
Hauptverfasser: Corsato, Chiara, De Coster, Colette, Omari, Pierpaolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We discuss existence, uniqueness, regularity and boundary behaviour of solutions of the Dirichlet problem for the prescribed anisotropic mean curvature equation−div(∇u/1+|∇u|2)=−au+b/1+|∇u|2, where a,b>0 are given parameters and Ω is a bounded Lipschitz domain in RN. This equation appears in the modeling theory of capillarity phenomena for compressible fluids and in the description of the geometry of the human cornea.
ISSN:0022-0396
1090-2732
DOI:10.1016/j.jde.2015.11.024