Two-photon-induced Förster resonance energy transfer in a hybrid material engineered from quantum dots and bacteriorhodopsin
Energy transfer from nanostructures to biological supramolecular photosystems is an important fundamental issue related to the possible influence of nanoobjects on biological functions. We demonstrate here two-photon-induced Förster resonance energy transfer (FRET) from fluorescent CdSe/ZnS quantum...
Gespeichert in:
Veröffentlicht in: | Optics letters 2015-04, Vol.40 (7), p.1440-1443 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Energy transfer from nanostructures to biological supramolecular photosystems is an important fundamental issue related to the possible influence of nanoobjects on biological functions. We demonstrate here two-photon-induced Förster resonance energy transfer (FRET) from fluorescent CdSe/ZnS quantum dots (QDs) to the photosensitive protein bacteriorhodopsin (bR) in a QD-bR hybrid material. The two-photon absorption cross section of QDs has been found to be about two orders of magnitude larger than that of bR. Therefore, highly selective two-photon excitation of QDs in QD-bR complexes is possible. Moreover, the efficiency of FRET from QDs to bR is sufficient to initiate bR photoconversion through two-photon excitation of QDs in the infrared spectral region. The data demonstrate that the effective spectral range in which the bR biological function is excited can be extended beyond the band where the protein itself utilizes light energy, which could open new ways to use this promising biotechnological material. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.40.001440 |