Polarization independent and temperature tolerant AWG based on a silicon nitride platform
A polarization tolerant optical receiver is a key building block for the development of wavelength division multiplexing based high-speed optical data links. However, the design of a polarization independent demultiplexer is not trivial. In this Letter, we report on the realization of a polarization...
Gespeichert in:
Veröffentlicht in: | Optics letters 2020-12, Vol.45 (23), p.6559-6562 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A polarization tolerant optical receiver is a key building block for the development of wavelength division multiplexing based high-speed optical data links. However, the design of a polarization independent demultiplexer is not trivial. In this Letter, we report on the realization of a polarization tolerant arrayed waveguide grating (AWG) on a 300-mm silicon nitride (SiN) photonic platform. By introducing a series of individual polarization rotators in the middle of the waveguide array, the polarization dependence of the AWG has been substantially reduced. Insertion losses below 2.2 dB and a crosstalk level better than − 29 d B has been obtained for transverse electric and transverse magnetic polarizations on a four-channel coarse AWG. The AWG temperature sensitivity has also been evaluated. Thanks to the low thermo-optical coefficient of SiN, a thermal shift below 12 pm/°C has been demonstrated. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.411332 |