Observations of the Disk/Jet Coupling of MAXI J1820+070 during Its Descent to Quiescence
Black hole X-ray binaries in the quiescent state (Eddington ratios typically 10−5) display softer X-ray spectra (photon indices Γ ∼ 2) compared to higher-luminosity black hole X-ray binaries in the hard state (Γ ∼ 1.7). However, the cause of this softening and its implications for the underlying acc...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2021-01, Vol.907 (1), p.34 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Black hole X-ray binaries in the quiescent state (Eddington ratios typically 10−5) display softer X-ray spectra (photon indices Γ ∼ 2) compared to higher-luminosity black hole X-ray binaries in the hard state (Γ ∼ 1.7). However, the cause of this softening and its implications for the underlying accretion flow are still uncertain. Here, we present quasi-simultaneous X-ray and radio spectral monitoring of the black hole X-ray binary MAXI J1820+070 during the decay of its 2018 outburst and of a subsequent reflare in 2019, providing an opportunity to monitor a black hole X-ray binary as it actively transitions into quiescence. We probe 1-10 keV X-ray luminosities as low as LX ∼ 4 × 1032 erg s−1, equivalent to Eddington fractions of ∼4 × 10−7. During its decay toward quiescence, the X-ray spectrum of MAXI J1820+070 softens from Γ ∼ 1.7 to Γ ∼ 2, with the softening taking ∼30 days and completing at LX 1034 erg s−1 ( 10−5 LEdd). While the X-ray spectrum softens, the radio spectrum generally remains flat or inverted throughout the decay. We also find that MAXI J1820+070 follows a radio (LR)-X-ray luminosity correlation of the form LR ∝ LX0.52 0.07, making it the fourth black hole system to follow the so-called "standard track" unbroken over several (in this case, four) decades in LX. Comparing the radio/X-ray spectral evolution(s) with the LR-LX plane, we find that the X-ray softening is consistent with X-rays produced by Comptonization processes in a radiatively inefficient accretion flow. We generally disfavor X-ray emission originating solely from within the jet, with the possible exception of X-rays produced via synchrotron self-Compton processes. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.3847/1538-4357/abd1de |