Dynamics of propylene glycol and its oligomers confined to a single molecular layer

The dynamics of propylene glycol (PG) and its oligomers 7-PG and poly-propylene glycol (PPG), with M(w) = 4000 (approximately 70 monomers), confined in a Na-vermiculite clay have been investigated by quasielastic neutron scattering. The liquids are confined to single molecular layers between clay pl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2005-06, Vol.122 (24), p.244702-244702
Hauptverfasser: Swenson, J, Engberg, D, Howells, W S, Seydel, T, Juranyi, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dynamics of propylene glycol (PG) and its oligomers 7-PG and poly-propylene glycol (PPG), with M(w) = 4000 (approximately 70 monomers), confined in a Na-vermiculite clay have been investigated by quasielastic neutron scattering. The liquids are confined to single molecular layers between clay platelets, giving a true two-dimensional liquid. Data from three different spectrometers of different resolutions were Fourier transformed to S(Q,t) and combined to give an extended dynamical time range of 0.3-2000 ps. An attempt was made to distinguish the diffusive motion from the methyl group rotation and a fast local motion of hydrogen in the polymer backbone. The results show that the average relaxation time tau(d) of this diffusive process is, as expected, larger than the relaxation time tau averaged over all dynamical processes observed in the experimental time window. More interesting, it is evident that the severe confinement has a relatively small effect on tau(d) at T = 300 K, this holds particularly for the longest oligomer, PPG. The most significant difference is that the chain-length dependence of tau(d) is weaker for the confined liquids, although the slowing down in bulk PG due to the formation of a three-dimensional network of OH-bonded end groups reduces this difference. The estimated average relaxation time tau at Q = 0.92 Angstroms(-1) for all the observed processes is in excellent agreement with the previously reported dielectric alpha relaxation time in the studied temperature range of 260-380 K. The average relaxation time tau (as well as the dielectric alpha relaxation time) is also almost unaffected by the confinement to a single molecular layer, suggesting that the interaction with the clay surfaces is weak and that the reduced dimensionality has only a weak influence on the time scale of all the dynamical processes observed in this study.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.1943408