Diving into Raynal’s DWBA code
The study of nucleon-nucleus elastic scattering for spherical targets amounts to solving Schrödinger equation with a given optical potential. This potential can be obtained microscopically by taking as a starting point the interaction between two nucleons. It can also be obtained in a phenomenologic...
Gespeichert in:
Veröffentlicht in: | The European physical journal. A, Hadrons and nuclei Hadrons and nuclei, 2021, Vol.57 (1), Article 13 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The study of nucleon-nucleus elastic scattering for spherical targets amounts to solving Schrödinger equation with a given optical potential. This potential can be obtained microscopically by taking as a starting point the interaction between two nucleons. It can also be obtained in a phenomenological way by postulating the geometry of potential and fitting parameters to reproduce experimental data. Microscopic approaches show in general terms that optical potentials are nonlocal, energy-dependent, complex and dispersive. The nonlocality of the potential leads to an integro-differential equation for the wavefunction. We present here a new version of SIDES (Schrödinger Integro-Differential Equation Solver), a code developed with the participation of Jacques Raynal, extended for nonlocal potentials with first-derivative terms. |
---|---|
ISSN: | 1434-6001 1434-601X |
DOI: | 10.1140/epja/s10050-020-00331-5 |