Diving into Raynal’s DWBA code

The study of nucleon-nucleus elastic scattering for spherical targets amounts to solving Schrödinger equation with a given optical potential. This potential can be obtained microscopically by taking as a starting point the interaction between two nucleons. It can also be obtained in a phenomenologic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. A, Hadrons and nuclei Hadrons and nuclei, 2021, Vol.57 (1), Article 13
Hauptverfasser: Blanchon, G., Dupuis, M., Arellano, H. F., Bernard, R. N., Morillon, B., Romain, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The study of nucleon-nucleus elastic scattering for spherical targets amounts to solving Schrödinger equation with a given optical potential. This potential can be obtained microscopically by taking as a starting point the interaction between two nucleons. It can also be obtained in a phenomenological way by postulating the geometry of potential and fitting parameters to reproduce experimental data. Microscopic approaches show in general terms that optical potentials are nonlocal, energy-dependent, complex and dispersive. The nonlocality of the potential leads to an integro-differential equation for the wavefunction. We present here a new version of SIDES (Schrödinger Integro-Differential Equation Solver), a code developed with the participation of Jacques Raynal, extended for nonlocal potentials with first-derivative terms.
ISSN:1434-6001
1434-601X
DOI:10.1140/epja/s10050-020-00331-5