Visual photoreceptor subtypes in the chicken retina: melatonin-synthesizing activity and in vitro differentiation
The chicken retina contains five visual photoreceptor subtypes, based on the specific opsin gene they express. In addition to the central role they play in vision, some or all of these photoreceptors translate photoperiodic information into a day–night rhythm of melatonin production. This indolic ho...
Gespeichert in:
Veröffentlicht in: | Cell and tissue research 2012-06, Vol.348 (3), p.417-427 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The chicken retina contains five visual photoreceptor subtypes, based on the specific opsin gene they express. In addition to the central role they play in vision, some or all of these photoreceptors translate photoperiodic information into a day–night rhythm of melatonin production. This indolic hormone plays an important role in the photoperiodic regulation of retinal physiology. Previous studies have stopped short of establishing whether melatonin synthesis takes place in all the photoreceptor spectral subtypes. Another issue that has been left unsettled by previous studies is when during development are retinal precursor cells committed to a specific photoreceptor subtype and to a melatoninergic phenotype? To address the first question, in situ hybridization of the five opsins was combined with immunofluorescent detection of the melatonin-synthesizing enzyme hydroxyindole O-methyltransferase (HIOMT, EC.2.1.1.4). Confocal microscopy clearly indicated that all photoreceptor spectral subtypes are involved in melatonin synthesis. To tackle the second question, retinal precursor cells were dissociated between embryonic day 6 (E6) and E13 and cultured in serum-free medium for 4 days to examine their ability to autonomously activate the expression of opsins and HIOMT. Real-time PCR on cultured precursors indicated that red-, green- and violet-sensitive cones are committed at E6, rods at E10 and blue-sensitive cones at E12. HIOMT gene expression was programmed at E6, probably reflecting the differentiation of early cones. The present study provides a better characterization of photoreceptor subtypes in the chicken retina and describes a combination of serum-free culture and real-time PCR that should facilitate further developmental studies. |
---|---|
ISSN: | 0302-766X 1432-0878 |
DOI: | 10.1007/s00441-012-1374-z |