The functional form of Mahler conjecture for even log-concave functions in dimension $2
Let $\varphi: \mathbb{R}^n\to \mathbb{R}\cup\{+\infty\}$ be an even convex function and $\mathcal{L}{\varphi}$ be its Legendre transform. We prove the functional form of Mahler conjecture concerning the functional volume product $P(\varphi)=\int e^{-\varphi}\int e^{-\mathcal{L}\varphi}$ in dimension...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2023-06, Vol.2023 (12), p.10067-10097 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $\varphi: \mathbb{R}^n\to \mathbb{R}\cup\{+\infty\}$ be an even convex function and $\mathcal{L}{\varphi}$ be its Legendre transform. We prove the functional form of Mahler conjecture concerning the functional volume product $P(\varphi)=\int e^{-\varphi}\int e^{-\mathcal{L}\varphi}$ in dimension 2: we give the sharp lower bound of this quantity and characterize the equality case.The proof uses the computation of the derivative in $t$ of $P(t\varphi)$ and ideas due to Meyer for unconditional convex bodies, adapted to the functional case by Fradelizi-Meyer and extended for symmetric convex bodies in dimension 3 by Iriyeh-Shibata. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnac120 |