Robust fault accommodation strategy of the reentry vehicle: a disturbance estimate-triggered approach
This study proposes a novel fault accommodation scheme for the strong coupled attitude system of the hypersonic reentry vehicle (HRV) with both actuator drift and loss of efficiency. A general coupling/fault/uncertainty effect-triggered control concept is first introduced for the HRV attitude tracki...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2021-02, Vol.103 (3), p.2605-2625 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study proposes a novel fault accommodation scheme for the strong coupled attitude system of the hypersonic reentry vehicle (HRV) with both actuator drift and loss of efficiency. A general coupling/fault/uncertainty effect-triggered control concept is first introduced for the HRV attitude tracking system to improve its robustness and dynamic performance, which can be derived easily via Lyapunov stability. The design of such a control approach is based on an improved adaptive disturbance observer (ADO) to estimate the lumped uncertainties and actuator faults. The proposed scheme can achieve graceful degradation in tracking performance for the fault-tolerant control system by eliminating the detrimental uncertainty and actuator fault while keeping the beneficial uncertainty and actuator fault. A detailed design procedure has been presented with consideration of the implementation problem. Simulation results obtained on the HRV have demonstrated the effectiveness of the approach proposed. |
---|---|
ISSN: | 0924-090X 1573-269X |
DOI: | 10.1007/s11071-021-06237-1 |