Low-frequency analogue Hawking radiation: The Bogoliubov-de Gennes model
We analytically study the low-frequency properties of the analogue Hawking effect in Bose-Einstein condensates. We show that in one-dimensional flows displaying an analogue horizon, the Hawking effect is dominant in the low-frequency regime. This happens despite nonvanishing grey-body factors, that...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2018-01, Vol.97 (2), Article 025006 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We analytically study the low-frequency properties of the analogue Hawking effect in Bose-Einstein condensates. We show that in one-dimensional flows displaying an analogue horizon, the Hawking effect is dominant in the low-frequency regime. This happens despite nonvanishing grey-body factors, that is, the coupling of the Hawking mode and its partner to the mode propagating with the flow. To show this, we obtained analytical expressions for the scattering coefficients, in general flows and taking into account the full Bogoliubov dispersion relation. We discuss the obtained expressions for the grey-body factors. In particular, we show that they can be significantly decreased if the flow obeys a conformal coupling condition. We argue that in the presence of a small but non-zero temperature, reducing grey-body factors greatly facilitates the observation of entanglement, that is, establishing that the state of the Hawking mode and its partner is non-separable. |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.97.025006 |