Polysaccharides and phenolics of miscanthus belowground cell walls and their influence on polyethylene composites
Belowground materials from two miscanthus species were ground into fragments for preparing polyethylene composites. Both species show a lot of similarities in terms of polysaccharides, lignin and cell wall-linked p-coumaric and ferulic acids contents. The structures of polysaccharides and of lignins...
Gespeichert in:
Veröffentlicht in: | Carbohydrate polymers 2021-01, Vol.251, p.117086-117086, Article 117086 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Belowground materials from two miscanthus species were ground into fragments for preparing polyethylene composites. Both species show a lot of similarities in terms of polysaccharides, lignin and cell wall-linked p-coumaric and ferulic acids contents. The structures of polysaccharides and of lignins are markedly different in the miscanthus belowground and aboveground biomass. The non-cellulosic fraction of the samples comprises a high level of xylose, with the arabinose to xylose ratio about twice as high as that observed for analogous stem samples, suggesting that belowground arabinoxylans are more substituted than stem ones. The mechanical properties of the belowground miscanthus-polyethylene composites correlate with several of their compositional traits, with similar trends as for plant stem-polyethylene composites with positive correlations for lignin and p-coumaric acid contents and negative correlations for most non-cellulosic sugars. |
---|---|
ISSN: | 0144-8617 1879-1344 |
DOI: | 10.1016/j.carbpol.2020.117086 |