Error rates and resource overheads of repetition cat qubits

We estimate and analyze the error rates and the resource overheads of the repetition cat qubit approach to universal and fault-tolerant quantum computation. The cat qubits stabilized by two-photon dissipation exhibit an extremely biased noise where the bit-flip error rate is exponentially suppressed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. A 2021-04, Vol.103 (4), Article 042413
Hauptverfasser: Guillaud, Jérémie, Mirrahimi, Mazyar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We estimate and analyze the error rates and the resource overheads of the repetition cat qubit approach to universal and fault-tolerant quantum computation. The cat qubits stabilized by two-photon dissipation exhibit an extremely biased noise where the bit-flip error rate is exponentially suppressed with the mean number of photons. In a recent work, we suggested that the remaining phase-flip error channel could be suppressed using a 1D repetition code. Indeed, using only bias-preserving gates on the cat-qubits, it is possible to build a universal set of fault-tolerant logical gates at the level of the repetition cat qubit. In this paper, we perform Monte-Carlo simulations of all the circuits implementing the protected logical gates, using a circuit-level error model. Furthermore, we analyze two different approaches to implement a fault-tolerant Toffoli gate on repetition cat qubits. These numerical simulations indicate that very low logical error rates could be achieved with a reasonable resource overhead, and with parameters that are within the reach of near-term circuit QED experiments.
ISSN:2469-9926
2469-9934
DOI:10.1103/PhysRevA.103.042413