Retroviral Infection of Primary Hepatocytes from Normal Mice and Mice Transgenic for SV40 Large T Antigen
Cultured adult rodent hepatocytes are extensively used as a model system for gene transfer in vitro. In the present study, we examined the influence differentiation status and growth capacity of the hepatocytes on their infectivity in vitro by a retroviral vector. These parameters were initially stu...
Gespeichert in:
Veröffentlicht in: | Experimental cell research 1993-03, Vol.205 (1), p.91-100 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cultured adult rodent hepatocytes are extensively used as a model system for gene transfer in vitro. In the present study, we examined the influence differentiation status and growth capacity of the hepatocytes on their infectivity in vitro by a retroviral vector. These parameters were initially studied in primary cultures of rat hepatocytes transduced with an ecotropic retroviral vector containing Escherichia coli β-galactosidase. However, significant differences observed in the infectivity of hepatocytes from 12-day-old and adult rats led us to also examine hepatocytes from a transgenic mouse strain in which the SV40 large T antigen is fused to the regulatory sequences of the human anti-thrombin III gene. The large T antigen is expressed in the liver and these mice develop hepatoma within 7 months. A comparison of infectivity of hepatocytes from normal and transgenic mice of different ages indicated that in contrast to previous reports, hepatocytes which express differentiated functions during the first week of culture can still be efficiently infected by retroviral vectors. Optimal infection was observed between the second and fourth day of culture and does not appear to be due to transient cell dedifferentiation, but is more likely due to transient mitotic activity of mice cells since the role of growth factors seems crucial for infection. The peak of infection did not appear to correspond to transient cell dedifferentiation. We also found differences of infectivity between hepatocytes from normal and transgenic mice of different ages. Such differences are correlated with differences in in vitro BrdU incorporation, which was used to determine the proportion of dividing hepatocytes. These results indicate that the efficiency of infectivity of hepatocytes by recombinant retrovirus is probably related to their normal proliferative potential and not to some dedifferentiated stage. Hence these findings provide a model for efficient gene transfer in differentiated cells and suggest an approach for studies of liver-specific gene regulation and for somatic gene therapy of metabolic diseases as well. |
---|---|
ISSN: | 0014-4827 1090-2422 |
DOI: | 10.1006/excr.1993.1062 |