Optimal Stable Nonlinear Approximation

While it is well-known that nonlinear methods of approximation can often perform dramatically better than linear methods, there are still questions on how to measure the optimal performance possible for such methods. This paper studies nonlinear methods of approximation that are compatible with nume...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of computational mathematics 2022-06, Vol.22 (3), p.607-648
Hauptverfasser: Cohen, Albert, DeVore, Ronald, Petrova, Guergana, Wojtaszczyk, Przemyslaw
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:While it is well-known that nonlinear methods of approximation can often perform dramatically better than linear methods, there are still questions on how to measure the optimal performance possible for such methods. This paper studies nonlinear methods of approximation that are compatible with numerical implementation in that they are required to be numerically stable. A measure of optimal performance, called stable manifold widths , for approximating a model class K in a Banach space X by stable manifold methods is introduced. Fundamental inequalities between these stable manifold widths and the entropy of K are established. The effects of requiring stability in the settings of deep learning and compressed sensing are discussed.
ISSN:1615-3375
1615-3383
DOI:10.1007/s10208-021-09494-z