Complexity lower bounds for computation trees with elementary transcendental function gates

We consider computation trees which admit as gate functions along with the usual arithmetic operations also algebraic or transcendental functions like exp, log, sin, square root (defined in the relevant domains) or much more general Pfaffian functions. A new method for proving lower bounds on the de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 1996-01, Vol.157 (2), p.185-214
Hauptverfasser: Grigoriev, D., Vorobjov, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider computation trees which admit as gate functions along with the usual arithmetic operations also algebraic or transcendental functions like exp, log, sin, square root (defined in the relevant domains) or much more general Pfaffian functions. A new method for proving lower bounds on the depth of these trees is developed which allows to prove a lower bound Ω(√log N) for testing membership to a convex polyhedron with N facets of all dimensions, provided that N is large enough.
ISSN:0304-3975
1879-2294
DOI:10.1016/0304-3975(95)00159-X