Two-parameter families of uniquely extendable Diophantine triples

Let A and K be positive integers and ε∈ {-2,-1,1,2}. The main contribution of the paper is a proof that each of the D(ε-2)-triples {K, A-2 K+2εA,(A +1)-2 K + 2ε(A+1)} has uniqui extension to a D(ε^2)-quadruple. This is used to slightly strengthen the conditions required for the existencc of a D(1)-q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2018-03, Vol.61 (3), p.421-438
Hauptverfasser: Cipu, Mihai, Fujita, Yasutsugu, Mignotte, Maurice
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let A and K be positive integers and ε∈ {-2,-1,1,2}. The main contribution of the paper is a proof that each of the D(ε-2)-triples {K, A-2 K+2εA,(A +1)-2 K + 2ε(A+1)} has uniqui extension to a D(ε^2)-quadruple. This is used to slightly strengthen the conditions required for the existencc of a D(1)-quintuple whose smallest three elements form a regular triple.
ISSN:1674-7283
1869-1862
DOI:10.1007/s11425-015-0638-0