Two-parameter families of uniquely extendable Diophantine triples
Let A and K be positive integers and ε∈ {-2,-1,1,2}. The main contribution of the paper is a proof that each of the D(ε-2)-triples {K, A-2 K+2εA,(A +1)-2 K + 2ε(A+1)} has uniqui extension to a D(ε^2)-quadruple. This is used to slightly strengthen the conditions required for the existencc of a D(1)-q...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2018-03, Vol.61 (3), p.421-438 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let A and K be positive integers and ε∈ {-2,-1,1,2}. The main contribution of the paper is a proof that each of the D(ε-2)-triples {K, A-2 K+2εA,(A +1)-2 K + 2ε(A+1)} has uniqui extension to a D(ε^2)-quadruple. This is used to slightly strengthen the conditions required for the existencc of a D(1)-quintuple whose smallest three elements form a regular triple. |
---|---|
ISSN: | 1674-7283 1869-1862 |
DOI: | 10.1007/s11425-015-0638-0 |