Symbolic Computations of First Integrals for Polynomial Vector Fields

In this article, we show how to generalize to the Darbouxian, Liouvillian and Riccati case the extactic curve introduced by J. Pereira. With this approach, we get new algorithms for computing, if it exists, a rational, Darbouxian, Liouvillian or Riccati first integral with bounded degree of a polyno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of computational mathematics 2020-08, Vol.20 (4), p.681-752
Hauptverfasser: Chèze, Guillaume, Combot, Thierry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 752
container_issue 4
container_start_page 681
container_title Foundations of computational mathematics
container_volume 20
creator Chèze, Guillaume
Combot, Thierry
description In this article, we show how to generalize to the Darbouxian, Liouvillian and Riccati case the extactic curve introduced by J. Pereira. With this approach, we get new algorithms for computing, if it exists, a rational, Darbouxian, Liouvillian or Riccati first integral with bounded degree of a polynomial planar vector field. We give probabilistic and deterministic algorithms. The arithmetic complexity of our probabilistic algorithm is in O ~ ( N ω + 1 ) , where N is the bound on the degree of a representation of the first integral and ω ∈ [ 2 ; 3 ] is the exponent of linear algebra. This result improves previous algorithms. Our algorithms have been implemented in Maple and are available on the authors’ websites. In the last section, we give some examples showing the efficiency of these algorithms.
doi_str_mv 10.1007/s10208-019-09437-9
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03033720v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A631516746</galeid><sourcerecordid>A631516746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-ba7dba1db401cb419e5da71c89068fa960b4f0d139bf48960eea0131ffa33f323</originalsourceid><addsrcrecordid>eNp9kktr4zAUhc3QwqSPPzArQ1dduL3X8kvLEJpJINDSdroVsix5FGwrlZTS_PtR6yElEIoWkg7fuUiHE0W_EG4QoLx1CClUCSBNgGakTOiPaIIF5gkhFTnZn8v8Z3Tm3BoAc4rZJLp72vW16bSIZ6bfbD332gwuNiqea-t8vBy8bC3vXKyMjR9MtxtMr3kXv0jhgzLXsmvcRXSqAiMv_-_n0Z_53fNskazufy9n01UiclL4pOZlU3Ns6gxQ1BlSmTe8RFFRKCrFaQF1pqBBQmuVVeEqJQckqBQnRJGUnEfX49y_vGMbq3tud8xwzRbTFfvQgED4ZApvGNirkd1Y87qVzrO12dohPI-lGQEMc0NSe6rlnWR6UMZbLnrtBJsWBHMsyqwIVHKEauUgQzRmkEoH-YC_OcKH1chei6OG6wNDYLx89y3fOseWT4-HbDqywhrnrFT7JBDYRxvY2AYW2sA-28BoMJHR5AI8tNJ-pfGN6x-YbbNx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430113194</pqid></control><display><type>article</type><title>Symbolic Computations of First Integrals for Polynomial Vector Fields</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chèze, Guillaume ; Combot, Thierry</creator><creatorcontrib>Chèze, Guillaume ; Combot, Thierry</creatorcontrib><description>In this article, we show how to generalize to the Darbouxian, Liouvillian and Riccati case the extactic curve introduced by J. Pereira. With this approach, we get new algorithms for computing, if it exists, a rational, Darbouxian, Liouvillian or Riccati first integral with bounded degree of a polynomial planar vector field. We give probabilistic and deterministic algorithms. The arithmetic complexity of our probabilistic algorithm is in O ~ ( N ω + 1 ) , where N is the bound on the degree of a representation of the first integral and ω ∈ [ 2 ; 3 ] is the exponent of linear algebra. This result improves previous algorithms. Our algorithms have been implemented in Maple and are available on the authors’ websites. In the last section, we give some examples showing the efficiency of these algorithms.</description><identifier>ISSN: 1615-3375</identifier><identifier>EISSN: 1615-3383</identifier><identifier>DOI: 10.1007/s10208-019-09437-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Applications of Mathematics ; Computer Science ; Economics ; Fields (mathematics) ; Integrals ; Linear algebra ; Linear and Multilinear Algebras ; Math Applications in Computer Science ; Mathematics ; Mathematics and Statistics ; Matrix Theory ; Numerical Analysis ; Polynomials ; Websites</subject><ispartof>Foundations of computational mathematics, 2020-08, Vol.20 (4), p.681-752</ispartof><rights>SFoCM 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>SFoCM 2019.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-ba7dba1db401cb419e5da71c89068fa960b4f0d139bf48960eea0131ffa33f323</citedby><cites>FETCH-LOGICAL-c536t-ba7dba1db401cb419e5da71c89068fa960b4f0d139bf48960eea0131ffa33f323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10208-019-09437-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10208-019-09437-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03033720$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chèze, Guillaume</creatorcontrib><creatorcontrib>Combot, Thierry</creatorcontrib><title>Symbolic Computations of First Integrals for Polynomial Vector Fields</title><title>Foundations of computational mathematics</title><addtitle>Found Comput Math</addtitle><description>In this article, we show how to generalize to the Darbouxian, Liouvillian and Riccati case the extactic curve introduced by J. Pereira. With this approach, we get new algorithms for computing, if it exists, a rational, Darbouxian, Liouvillian or Riccati first integral with bounded degree of a polynomial planar vector field. We give probabilistic and deterministic algorithms. The arithmetic complexity of our probabilistic algorithm is in O ~ ( N ω + 1 ) , where N is the bound on the degree of a representation of the first integral and ω ∈ [ 2 ; 3 ] is the exponent of linear algebra. This result improves previous algorithms. Our algorithms have been implemented in Maple and are available on the authors’ websites. In the last section, we give some examples showing the efficiency of these algorithms.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Computer Science</subject><subject>Economics</subject><subject>Fields (mathematics)</subject><subject>Integrals</subject><subject>Linear algebra</subject><subject>Linear and Multilinear Algebras</subject><subject>Math Applications in Computer Science</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix Theory</subject><subject>Numerical Analysis</subject><subject>Polynomials</subject><subject>Websites</subject><issn>1615-3375</issn><issn>1615-3383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kktr4zAUhc3QwqSPPzArQ1dduL3X8kvLEJpJINDSdroVsix5FGwrlZTS_PtR6yElEIoWkg7fuUiHE0W_EG4QoLx1CClUCSBNgGakTOiPaIIF5gkhFTnZn8v8Z3Tm3BoAc4rZJLp72vW16bSIZ6bfbD332gwuNiqea-t8vBy8bC3vXKyMjR9MtxtMr3kXv0jhgzLXsmvcRXSqAiMv_-_n0Z_53fNskazufy9n01UiclL4pOZlU3Ns6gxQ1BlSmTe8RFFRKCrFaQF1pqBBQmuVVeEqJQckqBQnRJGUnEfX49y_vGMbq3tud8xwzRbTFfvQgED4ZApvGNirkd1Y87qVzrO12dohPI-lGQEMc0NSe6rlnWR6UMZbLnrtBJsWBHMsyqwIVHKEauUgQzRmkEoH-YC_OcKH1chei6OG6wNDYLx89y3fOseWT4-HbDqywhrnrFT7JBDYRxvY2AYW2sA-28BoMJHR5AI8tNJ-pfGN6x-YbbNx</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Chèze, Guillaume</creator><creator>Combot, Thierry</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope></search><sort><creationdate>20200801</creationdate><title>Symbolic Computations of First Integrals for Polynomial Vector Fields</title><author>Chèze, Guillaume ; Combot, Thierry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-ba7dba1db401cb419e5da71c89068fa960b4f0d139bf48960eea0131ffa33f323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Computer Science</topic><topic>Economics</topic><topic>Fields (mathematics)</topic><topic>Integrals</topic><topic>Linear algebra</topic><topic>Linear and Multilinear Algebras</topic><topic>Math Applications in Computer Science</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix Theory</topic><topic>Numerical Analysis</topic><topic>Polynomials</topic><topic>Websites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chèze, Guillaume</creatorcontrib><creatorcontrib>Combot, Thierry</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Foundations of computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chèze, Guillaume</au><au>Combot, Thierry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symbolic Computations of First Integrals for Polynomial Vector Fields</atitle><jtitle>Foundations of computational mathematics</jtitle><stitle>Found Comput Math</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>20</volume><issue>4</issue><spage>681</spage><epage>752</epage><pages>681-752</pages><issn>1615-3375</issn><eissn>1615-3383</eissn><abstract>In this article, we show how to generalize to the Darbouxian, Liouvillian and Riccati case the extactic curve introduced by J. Pereira. With this approach, we get new algorithms for computing, if it exists, a rational, Darbouxian, Liouvillian or Riccati first integral with bounded degree of a polynomial planar vector field. We give probabilistic and deterministic algorithms. The arithmetic complexity of our probabilistic algorithm is in O ~ ( N ω + 1 ) , where N is the bound on the degree of a representation of the first integral and ω ∈ [ 2 ; 3 ] is the exponent of linear algebra. This result improves previous algorithms. Our algorithms have been implemented in Maple and are available on the authors’ websites. In the last section, we give some examples showing the efficiency of these algorithms.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10208-019-09437-9</doi><tpages>72</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1615-3375
ispartof Foundations of computational mathematics, 2020-08, Vol.20 (4), p.681-752
issn 1615-3375
1615-3383
language eng
recordid cdi_hal_primary_oai_HAL_hal_03033720v1
source SpringerLink Journals - AutoHoldings
subjects Algebra
Algorithms
Applications of Mathematics
Computer Science
Economics
Fields (mathematics)
Integrals
Linear algebra
Linear and Multilinear Algebras
Math Applications in Computer Science
Mathematics
Mathematics and Statistics
Matrix Theory
Numerical Analysis
Polynomials
Websites
title Symbolic Computations of First Integrals for Polynomial Vector Fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T02%3A08%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symbolic%20Computations%20of%20First%20Integrals%20for%20Polynomial%20Vector%20Fields&rft.jtitle=Foundations%20of%20computational%20mathematics&rft.au=Ch%C3%A8ze,%20Guillaume&rft.date=2020-08-01&rft.volume=20&rft.issue=4&rft.spage=681&rft.epage=752&rft.pages=681-752&rft.issn=1615-3375&rft.eissn=1615-3383&rft_id=info:doi/10.1007/s10208-019-09437-9&rft_dat=%3Cgale_hal_p%3EA631516746%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430113194&rft_id=info:pmid/&rft_galeid=A631516746&rfr_iscdi=true