Symbolic Computations of First Integrals for Polynomial Vector Fields

In this article, we show how to generalize to the Darbouxian, Liouvillian and Riccati case the extactic curve introduced by J. Pereira. With this approach, we get new algorithms for computing, if it exists, a rational, Darbouxian, Liouvillian or Riccati first integral with bounded degree of a polyno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of computational mathematics 2020-08, Vol.20 (4), p.681-752
Hauptverfasser: Chèze, Guillaume, Combot, Thierry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we show how to generalize to the Darbouxian, Liouvillian and Riccati case the extactic curve introduced by J. Pereira. With this approach, we get new algorithms for computing, if it exists, a rational, Darbouxian, Liouvillian or Riccati first integral with bounded degree of a polynomial planar vector field. We give probabilistic and deterministic algorithms. The arithmetic complexity of our probabilistic algorithm is in O ~ ( N ω + 1 ) , where N is the bound on the degree of a representation of the first integral and ω ∈ [ 2 ; 3 ] is the exponent of linear algebra. This result improves previous algorithms. Our algorithms have been implemented in Maple and are available on the authors’ websites. In the last section, we give some examples showing the efficiency of these algorithms.
ISSN:1615-3375
1615-3383
DOI:10.1007/s10208-019-09437-9