Functional and antimicrobial properties of herbal nanocomposites from Piper betle plant leaves for enhanced cotton fabrics
In the current times, the application of nanoparticles in the textile industry has become increasingly high due to the possibility of having anticipated properties, such as captivating colors, superior stability, antibacterial activity, and high-end UV-protection to the fabrics. In this study, natur...
Gespeichert in:
Veröffentlicht in: | JCT research 2020-09, Vol.17 (5), p.1363-1375 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the current times, the application of nanoparticles in the textile industry has become increasingly high due to the possibility of having anticipated properties, such as captivating colors, superior stability, antibacterial activity, and high-end UV-protection to the fabrics. In this study, natural herbal nanoparticles of different sizes were prepared from shade-dried leaves of
Piper betle
employing ball milling technique. Going forward, structural, morphological, UV-protective, and antibacterial properties of herbal nanocomposites coated on fabrics were thoroughly analyzed and interrelated with uncoated fabrics. Herbal nanoparticles were amalgamated with chitosan to make nanocomposites and are coated on cotton fabrics with the help of the pad-dry cure method. The analysis done to study physical properties of the coated fabrics, such as air permeability, crease recovery angle, tensile strength, tearing strength, thickness, and bursting strength, explicitly showed that coated fabrics have better functional properties as compared to uncoated fabrics. Along the same lines, herbal nanoparticles reflected good antibacterial and UV-absorption properties as compared to uncoated and chitosan-coated fabrics. Comprehension of functional properties revealed that herbal nanoparticle-coated fabrics highlights the potential applications of
Piper betle
nanoparticles in protective clothing. |
---|---|
ISSN: | 1547-0091 1935-3804 2168-8028 |
DOI: | 10.1007/s11998-020-00357-w |