New role of TRPM4 channel in the cardiac excitation-contraction coupling in response to physiological and pathological hypertrophy in mouse

The transient receptor potential Melastatin 4 (TRPM4) channel is a calcium-activated non-selective cation channel expressed widely. In the heart, using a knock-out mouse model, the TRPM4 channel has been shown to be involved in multiple processes, including β-adrenergic regulation, cardiac conductio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in biophysics and molecular biology 2021-01, Vol.159, p.105-117
Hauptverfasser: Hedon, Christophe, Lambert, Karen, Chakouri, Nourdine, Thireau, Jérôme, Aimond, Franck, Cassan, Cécile, Bideaux, Patrice, Richard, Sylvain, Faucherre, Adèle, Le Guennec, Jean-Yves, Demion, Marie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117
container_issue
container_start_page 105
container_title Progress in biophysics and molecular biology
container_volume 159
creator Hedon, Christophe
Lambert, Karen
Chakouri, Nourdine
Thireau, Jérôme
Aimond, Franck
Cassan, Cécile
Bideaux, Patrice
Richard, Sylvain
Faucherre, Adèle
Le Guennec, Jean-Yves
Demion, Marie
description The transient receptor potential Melastatin 4 (TRPM4) channel is a calcium-activated non-selective cation channel expressed widely. In the heart, using a knock-out mouse model, the TRPM4 channel has been shown to be involved in multiple processes, including β-adrenergic regulation, cardiac conduction, action potential duration and hypertrophic adaptations. This channel was recently shown to be involved in stress-induced cardiac arrhythmias in a mouse model overexpressing TRPM4 in ventricular cardiomyocytes. However, the link between TRPM4 channel expression in ventricular cardiomyocytes, the hypertrophic response to stress and/or cellular arrhythmias has yet to be elucidated. In this present study, we induced pathological hypertrophy in response to myocardial infarction using a mouse model of Trpm4 gene invalidation, and demonstrate that TRPM4 is essential for survival. We also demonstrate that the TRPM4 is required to activate both the Akt and Calcineurin pathways. Finally, using two hypertrophy models, either a physiological response to endurance training or a pathological response to myocardial infarction, we show that TRPM4 plays a role in regulating transient calcium amplitudes and leads to the development of cellular arrhythmias potentially in cooperation with the Sodium-calcium exchange (NCX). Here, we report two functions of the TRPM4 channel: first its role in adaptive hypertrophy, and second its association with NCX could mediate transient calcium amplitudes which trigger cellular arrhythmias.
doi_str_mv 10.1016/j.pbiomolbio.2020.09.006
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03024894v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0079610720300948</els_id><sourcerecordid>2449962539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-91501151ed808da612a160cc24122016d7ef22651dff85c0513594b417302cb73</originalsourceid><addsrcrecordid>eNqFkcuO1DAQRS0EYpqBX0BewiKh7Div5TACBql5CA1ry-1UJm45drDdA_0N_DSOemiWbMql0rlV1r2EUAYlA9a82ZfLzvjZ21xLDhxK6EuA5hHZsK6tCtZW_DHZALR90TBoL8izGPcAwFnbPCUXVQUV67jYkN-f8ScN3iL1I7399vWToHpSzqGlxtE0IdUqDEZpir-0SSoZ7wrtXQpKrz3V_rBY4-5WPGBcvItIk6fLdIzGW39ntLJUuYEuKk3nwXRcMKTgM7YqZ3-I-Jw8GZWN-OLhvSTf37-7vb4ptl8-fLy-2hZa1F0qelYDYzXDoYNuUA3jijWgNReM8-zO0OLIeVOzYRy7WkPNqroXO5FNAa53bXVJXp_2TsrKJZhZhaP0ysibq61cZ5BB0fXinmX21Yldgv9xwJjkbKJGa5XD_GfJhej7htdVn9HuhOrgYww4nnczkGtsci__xSbX2CT0MseWpS8frhx2Mw5n4d-cMvD2BGD25d5gkFEbdBoHE1AnOXjz_yt_ABDFrsI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449962539</pqid></control><display><type>article</type><title>New role of TRPM4 channel in the cardiac excitation-contraction coupling in response to physiological and pathological hypertrophy in mouse</title><source>Elsevier ScienceDirect Journals</source><creator>Hedon, Christophe ; Lambert, Karen ; Chakouri, Nourdine ; Thireau, Jérôme ; Aimond, Franck ; Cassan, Cécile ; Bideaux, Patrice ; Richard, Sylvain ; Faucherre, Adèle ; Le Guennec, Jean-Yves ; Demion, Marie</creator><creatorcontrib>Hedon, Christophe ; Lambert, Karen ; Chakouri, Nourdine ; Thireau, Jérôme ; Aimond, Franck ; Cassan, Cécile ; Bideaux, Patrice ; Richard, Sylvain ; Faucherre, Adèle ; Le Guennec, Jean-Yves ; Demion, Marie</creatorcontrib><description>The transient receptor potential Melastatin 4 (TRPM4) channel is a calcium-activated non-selective cation channel expressed widely. In the heart, using a knock-out mouse model, the TRPM4 channel has been shown to be involved in multiple processes, including β-adrenergic regulation, cardiac conduction, action potential duration and hypertrophic adaptations. This channel was recently shown to be involved in stress-induced cardiac arrhythmias in a mouse model overexpressing TRPM4 in ventricular cardiomyocytes. However, the link between TRPM4 channel expression in ventricular cardiomyocytes, the hypertrophic response to stress and/or cellular arrhythmias has yet to be elucidated. In this present study, we induced pathological hypertrophy in response to myocardial infarction using a mouse model of Trpm4 gene invalidation, and demonstrate that TRPM4 is essential for survival. We also demonstrate that the TRPM4 is required to activate both the Akt and Calcineurin pathways. Finally, using two hypertrophy models, either a physiological response to endurance training or a pathological response to myocardial infarction, we show that TRPM4 plays a role in regulating transient calcium amplitudes and leads to the development of cellular arrhythmias potentially in cooperation with the Sodium-calcium exchange (NCX). Here, we report two functions of the TRPM4 channel: first its role in adaptive hypertrophy, and second its association with NCX could mediate transient calcium amplitudes which trigger cellular arrhythmias.</description><identifier>ISSN: 0079-6107</identifier><identifier>EISSN: 1873-1732</identifier><identifier>DOI: 10.1016/j.pbiomolbio.2020.09.006</identifier><identifier>PMID: 33031824</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Arrhythmias ; Hypertrophy ; Life Sciences ; Myocardial infarction ; SOCE ; TRPM4 channel</subject><ispartof>Progress in biophysics and molecular biology, 2021-01, Vol.159, p.105-117</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright © 2020 Elsevier Ltd. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-91501151ed808da612a160cc24122016d7ef22651dff85c0513594b417302cb73</citedby><cites>FETCH-LOGICAL-c458t-91501151ed808da612a160cc24122016d7ef22651dff85c0513594b417302cb73</cites><orcidid>0000-0001-9124-0066 ; 0000-0001-9460-6705 ; 0000-0003-0903-148X ; 0000-0002-8809-8684 ; 0000-0003-4777-0654 ; 0000-0001-9505-2097 ; 0000-0002-6389-2451 ; 0000-0002-6099-3898 ; 0000-0003-2205-8222 ; 0000-0002-1641-5142 ; 0000-0001-8791-4208</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.pbiomolbio.2020.09.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33031824$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03024894$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hedon, Christophe</creatorcontrib><creatorcontrib>Lambert, Karen</creatorcontrib><creatorcontrib>Chakouri, Nourdine</creatorcontrib><creatorcontrib>Thireau, Jérôme</creatorcontrib><creatorcontrib>Aimond, Franck</creatorcontrib><creatorcontrib>Cassan, Cécile</creatorcontrib><creatorcontrib>Bideaux, Patrice</creatorcontrib><creatorcontrib>Richard, Sylvain</creatorcontrib><creatorcontrib>Faucherre, Adèle</creatorcontrib><creatorcontrib>Le Guennec, Jean-Yves</creatorcontrib><creatorcontrib>Demion, Marie</creatorcontrib><title>New role of TRPM4 channel in the cardiac excitation-contraction coupling in response to physiological and pathological hypertrophy in mouse</title><title>Progress in biophysics and molecular biology</title><addtitle>Prog Biophys Mol Biol</addtitle><description>The transient receptor potential Melastatin 4 (TRPM4) channel is a calcium-activated non-selective cation channel expressed widely. In the heart, using a knock-out mouse model, the TRPM4 channel has been shown to be involved in multiple processes, including β-adrenergic regulation, cardiac conduction, action potential duration and hypertrophic adaptations. This channel was recently shown to be involved in stress-induced cardiac arrhythmias in a mouse model overexpressing TRPM4 in ventricular cardiomyocytes. However, the link between TRPM4 channel expression in ventricular cardiomyocytes, the hypertrophic response to stress and/or cellular arrhythmias has yet to be elucidated. In this present study, we induced pathological hypertrophy in response to myocardial infarction using a mouse model of Trpm4 gene invalidation, and demonstrate that TRPM4 is essential for survival. We also demonstrate that the TRPM4 is required to activate both the Akt and Calcineurin pathways. Finally, using two hypertrophy models, either a physiological response to endurance training or a pathological response to myocardial infarction, we show that TRPM4 plays a role in regulating transient calcium amplitudes and leads to the development of cellular arrhythmias potentially in cooperation with the Sodium-calcium exchange (NCX). Here, we report two functions of the TRPM4 channel: first its role in adaptive hypertrophy, and second its association with NCX could mediate transient calcium amplitudes which trigger cellular arrhythmias.</description><subject>Arrhythmias</subject><subject>Hypertrophy</subject><subject>Life Sciences</subject><subject>Myocardial infarction</subject><subject>SOCE</subject><subject>TRPM4 channel</subject><issn>0079-6107</issn><issn>1873-1732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkcuO1DAQRS0EYpqBX0BewiKh7Div5TACBql5CA1ry-1UJm45drDdA_0N_DSOemiWbMql0rlV1r2EUAYlA9a82ZfLzvjZ21xLDhxK6EuA5hHZsK6tCtZW_DHZALR90TBoL8izGPcAwFnbPCUXVQUV67jYkN-f8ScN3iL1I7399vWToHpSzqGlxtE0IdUqDEZpir-0SSoZ7wrtXQpKrz3V_rBY4-5WPGBcvItIk6fLdIzGW39ntLJUuYEuKk3nwXRcMKTgM7YqZ3-I-Jw8GZWN-OLhvSTf37-7vb4ptl8-fLy-2hZa1F0qelYDYzXDoYNuUA3jijWgNReM8-zO0OLIeVOzYRy7WkPNqroXO5FNAa53bXVJXp_2TsrKJZhZhaP0ysibq61cZ5BB0fXinmX21Yldgv9xwJjkbKJGa5XD_GfJhej7htdVn9HuhOrgYww4nnczkGtsci__xSbX2CT0MseWpS8frhx2Mw5n4d-cMvD2BGD25d5gkFEbdBoHE1AnOXjz_yt_ABDFrsI</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Hedon, Christophe</creator><creator>Lambert, Karen</creator><creator>Chakouri, Nourdine</creator><creator>Thireau, Jérôme</creator><creator>Aimond, Franck</creator><creator>Cassan, Cécile</creator><creator>Bideaux, Patrice</creator><creator>Richard, Sylvain</creator><creator>Faucherre, Adèle</creator><creator>Le Guennec, Jean-Yves</creator><creator>Demion, Marie</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9124-0066</orcidid><orcidid>https://orcid.org/0000-0001-9460-6705</orcidid><orcidid>https://orcid.org/0000-0003-0903-148X</orcidid><orcidid>https://orcid.org/0000-0002-8809-8684</orcidid><orcidid>https://orcid.org/0000-0003-4777-0654</orcidid><orcidid>https://orcid.org/0000-0001-9505-2097</orcidid><orcidid>https://orcid.org/0000-0002-6389-2451</orcidid><orcidid>https://orcid.org/0000-0002-6099-3898</orcidid><orcidid>https://orcid.org/0000-0003-2205-8222</orcidid><orcidid>https://orcid.org/0000-0002-1641-5142</orcidid><orcidid>https://orcid.org/0000-0001-8791-4208</orcidid></search><sort><creationdate>202101</creationdate><title>New role of TRPM4 channel in the cardiac excitation-contraction coupling in response to physiological and pathological hypertrophy in mouse</title><author>Hedon, Christophe ; Lambert, Karen ; Chakouri, Nourdine ; Thireau, Jérôme ; Aimond, Franck ; Cassan, Cécile ; Bideaux, Patrice ; Richard, Sylvain ; Faucherre, Adèle ; Le Guennec, Jean-Yves ; Demion, Marie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-91501151ed808da612a160cc24122016d7ef22651dff85c0513594b417302cb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arrhythmias</topic><topic>Hypertrophy</topic><topic>Life Sciences</topic><topic>Myocardial infarction</topic><topic>SOCE</topic><topic>TRPM4 channel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hedon, Christophe</creatorcontrib><creatorcontrib>Lambert, Karen</creatorcontrib><creatorcontrib>Chakouri, Nourdine</creatorcontrib><creatorcontrib>Thireau, Jérôme</creatorcontrib><creatorcontrib>Aimond, Franck</creatorcontrib><creatorcontrib>Cassan, Cécile</creatorcontrib><creatorcontrib>Bideaux, Patrice</creatorcontrib><creatorcontrib>Richard, Sylvain</creatorcontrib><creatorcontrib>Faucherre, Adèle</creatorcontrib><creatorcontrib>Le Guennec, Jean-Yves</creatorcontrib><creatorcontrib>Demion, Marie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Progress in biophysics and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hedon, Christophe</au><au>Lambert, Karen</au><au>Chakouri, Nourdine</au><au>Thireau, Jérôme</au><au>Aimond, Franck</au><au>Cassan, Cécile</au><au>Bideaux, Patrice</au><au>Richard, Sylvain</au><au>Faucherre, Adèle</au><au>Le Guennec, Jean-Yves</au><au>Demion, Marie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New role of TRPM4 channel in the cardiac excitation-contraction coupling in response to physiological and pathological hypertrophy in mouse</atitle><jtitle>Progress in biophysics and molecular biology</jtitle><addtitle>Prog Biophys Mol Biol</addtitle><date>2021-01</date><risdate>2021</risdate><volume>159</volume><spage>105</spage><epage>117</epage><pages>105-117</pages><issn>0079-6107</issn><eissn>1873-1732</eissn><abstract>The transient receptor potential Melastatin 4 (TRPM4) channel is a calcium-activated non-selective cation channel expressed widely. In the heart, using a knock-out mouse model, the TRPM4 channel has been shown to be involved in multiple processes, including β-adrenergic regulation, cardiac conduction, action potential duration and hypertrophic adaptations. This channel was recently shown to be involved in stress-induced cardiac arrhythmias in a mouse model overexpressing TRPM4 in ventricular cardiomyocytes. However, the link between TRPM4 channel expression in ventricular cardiomyocytes, the hypertrophic response to stress and/or cellular arrhythmias has yet to be elucidated. In this present study, we induced pathological hypertrophy in response to myocardial infarction using a mouse model of Trpm4 gene invalidation, and demonstrate that TRPM4 is essential for survival. We also demonstrate that the TRPM4 is required to activate both the Akt and Calcineurin pathways. Finally, using two hypertrophy models, either a physiological response to endurance training or a pathological response to myocardial infarction, we show that TRPM4 plays a role in regulating transient calcium amplitudes and leads to the development of cellular arrhythmias potentially in cooperation with the Sodium-calcium exchange (NCX). Here, we report two functions of the TRPM4 channel: first its role in adaptive hypertrophy, and second its association with NCX could mediate transient calcium amplitudes which trigger cellular arrhythmias.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>33031824</pmid><doi>10.1016/j.pbiomolbio.2020.09.006</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9124-0066</orcidid><orcidid>https://orcid.org/0000-0001-9460-6705</orcidid><orcidid>https://orcid.org/0000-0003-0903-148X</orcidid><orcidid>https://orcid.org/0000-0002-8809-8684</orcidid><orcidid>https://orcid.org/0000-0003-4777-0654</orcidid><orcidid>https://orcid.org/0000-0001-9505-2097</orcidid><orcidid>https://orcid.org/0000-0002-6389-2451</orcidid><orcidid>https://orcid.org/0000-0002-6099-3898</orcidid><orcidid>https://orcid.org/0000-0003-2205-8222</orcidid><orcidid>https://orcid.org/0000-0002-1641-5142</orcidid><orcidid>https://orcid.org/0000-0001-8791-4208</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0079-6107
ispartof Progress in biophysics and molecular biology, 2021-01, Vol.159, p.105-117
issn 0079-6107
1873-1732
language eng
recordid cdi_hal_primary_oai_HAL_hal_03024894v1
source Elsevier ScienceDirect Journals
subjects Arrhythmias
Hypertrophy
Life Sciences
Myocardial infarction
SOCE
TRPM4 channel
title New role of TRPM4 channel in the cardiac excitation-contraction coupling in response to physiological and pathological hypertrophy in mouse
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A57%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20role%20of%20TRPM4%20channel%20in%20the%20cardiac%20excitation-contraction%20coupling%20in%20response%20to%20physiological%20and%20pathological%20hypertrophy%20in%20mouse&rft.jtitle=Progress%20in%20biophysics%20and%20molecular%20biology&rft.au=Hedon,%20Christophe&rft.date=2021-01&rft.volume=159&rft.spage=105&rft.epage=117&rft.pages=105-117&rft.issn=0079-6107&rft.eissn=1873-1732&rft_id=info:doi/10.1016/j.pbiomolbio.2020.09.006&rft_dat=%3Cproquest_hal_p%3E2449962539%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449962539&rft_id=info:pmid/33031824&rft_els_id=S0079610720300948&rfr_iscdi=true