New role of TRPM4 channel in the cardiac excitation-contraction coupling in response to physiological and pathological hypertrophy in mouse

The transient receptor potential Melastatin 4 (TRPM4) channel is a calcium-activated non-selective cation channel expressed widely. In the heart, using a knock-out mouse model, the TRPM4 channel has been shown to be involved in multiple processes, including β-adrenergic regulation, cardiac conductio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in biophysics and molecular biology 2021-01, Vol.159, p.105-117
Hauptverfasser: Hedon, Christophe, Lambert, Karen, Chakouri, Nourdine, Thireau, Jérôme, Aimond, Franck, Cassan, Cécile, Bideaux, Patrice, Richard, Sylvain, Faucherre, Adèle, Le Guennec, Jean-Yves, Demion, Marie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The transient receptor potential Melastatin 4 (TRPM4) channel is a calcium-activated non-selective cation channel expressed widely. In the heart, using a knock-out mouse model, the TRPM4 channel has been shown to be involved in multiple processes, including β-adrenergic regulation, cardiac conduction, action potential duration and hypertrophic adaptations. This channel was recently shown to be involved in stress-induced cardiac arrhythmias in a mouse model overexpressing TRPM4 in ventricular cardiomyocytes. However, the link between TRPM4 channel expression in ventricular cardiomyocytes, the hypertrophic response to stress and/or cellular arrhythmias has yet to be elucidated. In this present study, we induced pathological hypertrophy in response to myocardial infarction using a mouse model of Trpm4 gene invalidation, and demonstrate that TRPM4 is essential for survival. We also demonstrate that the TRPM4 is required to activate both the Akt and Calcineurin pathways. Finally, using two hypertrophy models, either a physiological response to endurance training or a pathological response to myocardial infarction, we show that TRPM4 plays a role in regulating transient calcium amplitudes and leads to the development of cellular arrhythmias potentially in cooperation with the Sodium-calcium exchange (NCX). Here, we report two functions of the TRPM4 channel: first its role in adaptive hypertrophy, and second its association with NCX could mediate transient calcium amplitudes which trigger cellular arrhythmias.
ISSN:0079-6107
1873-1732
DOI:10.1016/j.pbiomolbio.2020.09.006