DNA Origami for Silicon Patterning
Desoxyribonucleic acid (DNA) origami architectures are a promising tool for ultimate lithography because of their ability to generate nanostructures with a minimum feature size down to 2 nm. In this paper, we developed a method for silicon (Si) nanopatterning to face up current limitations for high-...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-08, Vol.12 (32), p.36799-36809 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Desoxyribonucleic acid (DNA) origami architectures are a promising tool for ultimate lithography because of their ability to generate nanostructures with a minimum feature size down to 2 nm. In this paper, we developed a method for silicon (Si) nanopatterning to face up current limitations for high-resolution patterning with standard microelectronic processes. For the first time, a 2 nm-thick 2D DNA origami mask, with specific design composed of three different square holes (with a size of 10 and 20 nm), is used for positive pattern transfer into a Si substrate using a 15 nm-thick silicon dioxide (SiO2) layer as an intermediate hard mask. First, the origami mask is transferred onto the SiO2 underlayer, by an HF vapor-etching process. Then, the Si underlayer is etched using an HBr/O2 plasma. Each hole is transferred in the SiO2 layer and the 20 nm-sized holes are transferred into the final stack (Si). The resulting patterns exhibited a lateral resolution in the range of 20 nm and a depth of 40 nm. Patterns are fully characterized by atomic force microscopy, scanning electron microscopy, focused ion beam–transmission electron microscopy, and ellipsometry measurements. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.0c10211 |