Proposed Requirements for Cardiovascular Imaging-Related Machine Learning Evaluation (PRIME): A Checklist

Machine learning (ML) has been increasingly used within cardiology, particularly in the domain of cardiovascular imaging. Due to the inherent complexity and flexibility of ML algorithms, inconsistencies in the model performance and interpretation may occur. Several review articles have been recently...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JACC. Cardiovascular imaging 2020-09, Vol.13 (9), p.2017-2035
Hauptverfasser: Sengupta, Partho P., Shrestha, Sirish, Berthon, Béatrice, Messas, Emmanuel, Donal, Erwan, Tison, Geoffrey H., Min, James K., D’hooge, Jan, Voigt, Jens-Uwe, Dudley, Joel, Verjans, Johan W., Shameer, Khader, Johnson, Kipp, Lovstakken, Lasse, Tabassian, Mahdi, Piccirilli, Marco, Pernot, Mathieu, Yanamala, Naveena, Duchateau, Nicolas, Kagiyama, Nobuyuki, Bernard, Olivier, Slomka, Piotr, Deo, Rahul, Arnaout, Rima
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2035
container_issue 9
container_start_page 2017
container_title JACC. Cardiovascular imaging
container_volume 13
creator Sengupta, Partho P.
Shrestha, Sirish
Berthon, Béatrice
Messas, Emmanuel
Donal, Erwan
Tison, Geoffrey H.
Min, James K.
D’hooge, Jan
Voigt, Jens-Uwe
Dudley, Joel
Verjans, Johan W.
Shameer, Khader
Johnson, Kipp
Lovstakken, Lasse
Tabassian, Mahdi
Piccirilli, Marco
Pernot, Mathieu
Yanamala, Naveena
Duchateau, Nicolas
Kagiyama, Nobuyuki
Bernard, Olivier
Slomka, Piotr
Deo, Rahul
Arnaout, Rima
description Machine learning (ML) has been increasingly used within cardiology, particularly in the domain of cardiovascular imaging. Due to the inherent complexity and flexibility of ML algorithms, inconsistencies in the model performance and interpretation may occur. Several review articles have been recently published that introduce the fundamental principles and clinical application of ML for cardiologists. This paper builds on these introductory principles and outlines a more comprehensive list of crucial responsibilities that need to be completed when developing ML models. This paper aims to serve as a scientific foundation to aid investigators, data scientists, authors, editors, and reviewers involved in machine learning research with the intent of uniform reporting of ML investigations. An independent multidisciplinary panel of ML experts, clinicians, and statisticians worked together to review the theoretical rationale underlying 7 sets of requirements that may reduce algorithmic errors and biases. Finally, the paper summarizes a list of reporting items as an itemized checklist that highlights steps for ensuring correct application of ML models and the consistent reporting of model specifications and results. It is expected that the rapid pace of research and development and the increased availability of real-world evidence may require periodic updates to the checklist. [Display omitted] •Algorithm complexity and flexibility of ML techniques can result in inconsistencies in model reporting and interpretations.•The PRIME checklist provides 7 items to be reported for reducing algorithmic errors and biases.•The checklist aims to standardize reporting on model design, data, selection, assessment, evaluation, replicability, and limitations.•As artificial intelligence and ML technologies continue to grow, the checklist will need periodic updates.
doi_str_mv 10.1016/j.jcmg.2020.07.015
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03019705v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1936878X20306367</els_id><sourcerecordid>oai_HAL_hal_03019705v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2235-b9c6ff0f2fae4f713e6f1b3e0d7cb792851e4ede90627bd83a567dfc4c2ebb2b3</originalsourceid><addsrcrecordid>eNp9kMFKw0AQhoMoWKsv4GmP9pA4u0l2E_FSSrWFFktR8LZsNrPtxjTR3bTg25tS8ehphpn_G5gvCG4pRBQov6-iSu82EQMGEYgIaHoWDGgmeCjSnJ73fR7zMBPZ-2Vw5X0FwIEnYhDYlWs_W48lWePX3jrcYdN5YlpHJsqVtj0or_e1cmS-UxvbbMI11qrr80ult7ZBskDlmn5BpgdV71Vn24bcrdbz5XT0QMZkskX9UVvfXQcXRtUeb37rMHh7mr5OZuHi5Xk-GS9CzVichkWuuTFgmFGYGEFj5IYWMUIpdCFylqUUEywxB85EUWaxSrkojU40w6JgRTwMRqe7W1XLT2d3yn3LVlk5Gy_kcQYx0FxAeqB9lp2y2rXeOzR_AAV5FCsreRQrj2IlCNmL7aHHE4T9FweLTnptsdFY9vp0J8vW_of_AN5Lgmc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Proposed Requirements for Cardiovascular Imaging-Related Machine Learning Evaluation (PRIME): A Checklist</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sengupta, Partho P. ; Shrestha, Sirish ; Berthon, Béatrice ; Messas, Emmanuel ; Donal, Erwan ; Tison, Geoffrey H. ; Min, James K. ; D’hooge, Jan ; Voigt, Jens-Uwe ; Dudley, Joel ; Verjans, Johan W. ; Shameer, Khader ; Johnson, Kipp ; Lovstakken, Lasse ; Tabassian, Mahdi ; Piccirilli, Marco ; Pernot, Mathieu ; Yanamala, Naveena ; Duchateau, Nicolas ; Kagiyama, Nobuyuki ; Bernard, Olivier ; Slomka, Piotr ; Deo, Rahul ; Arnaout, Rima</creator><creatorcontrib>Sengupta, Partho P. ; Shrestha, Sirish ; Berthon, Béatrice ; Messas, Emmanuel ; Donal, Erwan ; Tison, Geoffrey H. ; Min, James K. ; D’hooge, Jan ; Voigt, Jens-Uwe ; Dudley, Joel ; Verjans, Johan W. ; Shameer, Khader ; Johnson, Kipp ; Lovstakken, Lasse ; Tabassian, Mahdi ; Piccirilli, Marco ; Pernot, Mathieu ; Yanamala, Naveena ; Duchateau, Nicolas ; Kagiyama, Nobuyuki ; Bernard, Olivier ; Slomka, Piotr ; Deo, Rahul ; Arnaout, Rima</creatorcontrib><description>Machine learning (ML) has been increasingly used within cardiology, particularly in the domain of cardiovascular imaging. Due to the inherent complexity and flexibility of ML algorithms, inconsistencies in the model performance and interpretation may occur. Several review articles have been recently published that introduce the fundamental principles and clinical application of ML for cardiologists. This paper builds on these introductory principles and outlines a more comprehensive list of crucial responsibilities that need to be completed when developing ML models. This paper aims to serve as a scientific foundation to aid investigators, data scientists, authors, editors, and reviewers involved in machine learning research with the intent of uniform reporting of ML investigations. An independent multidisciplinary panel of ML experts, clinicians, and statisticians worked together to review the theoretical rationale underlying 7 sets of requirements that may reduce algorithmic errors and biases. Finally, the paper summarizes a list of reporting items as an itemized checklist that highlights steps for ensuring correct application of ML models and the consistent reporting of model specifications and results. It is expected that the rapid pace of research and development and the increased availability of real-world evidence may require periodic updates to the checklist. [Display omitted] •Algorithm complexity and flexibility of ML techniques can result in inconsistencies in model reporting and interpretations.•The PRIME checklist provides 7 items to be reported for reducing algorithmic errors and biases.•The checklist aims to standardize reporting on model design, data, selection, assessment, evaluation, replicability, and limitations.•As artificial intelligence and ML technologies continue to grow, the checklist will need periodic updates.</description><identifier>ISSN: 1936-878X</identifier><identifier>EISSN: 1876-7591</identifier><identifier>DOI: 10.1016/j.jcmg.2020.07.015</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>artificial intelligence ; cardiovascular imaging ; checklist ; Computer Science ; digital health ; machine learning ; Medical Imaging ; reporting guidelines ; reproducible research</subject><ispartof>JACC. Cardiovascular imaging, 2020-09, Vol.13 (9), p.2017-2035</ispartof><rights>2020 American College of Cardiology Foundation</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2235-b9c6ff0f2fae4f713e6f1b3e0d7cb792851e4ede90627bd83a567dfc4c2ebb2b3</citedby><cites>FETCH-LOGICAL-c2235-b9c6ff0f2fae4f713e6f1b3e0d7cb792851e4ede90627bd83a567dfc4c2ebb2b3</cites><orcidid>0000-0001-8803-2004 ; 0000-0003-0752-9946 ; 0000-0001-5882-8925 ; 0000-0003-2677-3389 ; 0000-0002-9083-1582</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1936878X20306367$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03019705$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sengupta, Partho P.</creatorcontrib><creatorcontrib>Shrestha, Sirish</creatorcontrib><creatorcontrib>Berthon, Béatrice</creatorcontrib><creatorcontrib>Messas, Emmanuel</creatorcontrib><creatorcontrib>Donal, Erwan</creatorcontrib><creatorcontrib>Tison, Geoffrey H.</creatorcontrib><creatorcontrib>Min, James K.</creatorcontrib><creatorcontrib>D’hooge, Jan</creatorcontrib><creatorcontrib>Voigt, Jens-Uwe</creatorcontrib><creatorcontrib>Dudley, Joel</creatorcontrib><creatorcontrib>Verjans, Johan W.</creatorcontrib><creatorcontrib>Shameer, Khader</creatorcontrib><creatorcontrib>Johnson, Kipp</creatorcontrib><creatorcontrib>Lovstakken, Lasse</creatorcontrib><creatorcontrib>Tabassian, Mahdi</creatorcontrib><creatorcontrib>Piccirilli, Marco</creatorcontrib><creatorcontrib>Pernot, Mathieu</creatorcontrib><creatorcontrib>Yanamala, Naveena</creatorcontrib><creatorcontrib>Duchateau, Nicolas</creatorcontrib><creatorcontrib>Kagiyama, Nobuyuki</creatorcontrib><creatorcontrib>Bernard, Olivier</creatorcontrib><creatorcontrib>Slomka, Piotr</creatorcontrib><creatorcontrib>Deo, Rahul</creatorcontrib><creatorcontrib>Arnaout, Rima</creatorcontrib><title>Proposed Requirements for Cardiovascular Imaging-Related Machine Learning Evaluation (PRIME): A Checklist</title><title>JACC. Cardiovascular imaging</title><description>Machine learning (ML) has been increasingly used within cardiology, particularly in the domain of cardiovascular imaging. Due to the inherent complexity and flexibility of ML algorithms, inconsistencies in the model performance and interpretation may occur. Several review articles have been recently published that introduce the fundamental principles and clinical application of ML for cardiologists. This paper builds on these introductory principles and outlines a more comprehensive list of crucial responsibilities that need to be completed when developing ML models. This paper aims to serve as a scientific foundation to aid investigators, data scientists, authors, editors, and reviewers involved in machine learning research with the intent of uniform reporting of ML investigations. An independent multidisciplinary panel of ML experts, clinicians, and statisticians worked together to review the theoretical rationale underlying 7 sets of requirements that may reduce algorithmic errors and biases. Finally, the paper summarizes a list of reporting items as an itemized checklist that highlights steps for ensuring correct application of ML models and the consistent reporting of model specifications and results. It is expected that the rapid pace of research and development and the increased availability of real-world evidence may require periodic updates to the checklist. [Display omitted] •Algorithm complexity and flexibility of ML techniques can result in inconsistencies in model reporting and interpretations.•The PRIME checklist provides 7 items to be reported for reducing algorithmic errors and biases.•The checklist aims to standardize reporting on model design, data, selection, assessment, evaluation, replicability, and limitations.•As artificial intelligence and ML technologies continue to grow, the checklist will need periodic updates.</description><subject>artificial intelligence</subject><subject>cardiovascular imaging</subject><subject>checklist</subject><subject>Computer Science</subject><subject>digital health</subject><subject>machine learning</subject><subject>Medical Imaging</subject><subject>reporting guidelines</subject><subject>reproducible research</subject><issn>1936-878X</issn><issn>1876-7591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKw0AQhoMoWKsv4GmP9pA4u0l2E_FSSrWFFktR8LZsNrPtxjTR3bTg25tS8ehphpn_G5gvCG4pRBQov6-iSu82EQMGEYgIaHoWDGgmeCjSnJ73fR7zMBPZ-2Vw5X0FwIEnYhDYlWs_W48lWePX3jrcYdN5YlpHJsqVtj0or_e1cmS-UxvbbMI11qrr80ult7ZBskDlmn5BpgdV71Vn24bcrdbz5XT0QMZkskX9UVvfXQcXRtUeb37rMHh7mr5OZuHi5Xk-GS9CzVichkWuuTFgmFGYGEFj5IYWMUIpdCFylqUUEywxB85EUWaxSrkojU40w6JgRTwMRqe7W1XLT2d3yn3LVlk5Gy_kcQYx0FxAeqB9lp2y2rXeOzR_AAV5FCsreRQrj2IlCNmL7aHHE4T9FweLTnptsdFY9vp0J8vW_of_AN5Lgmc</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Sengupta, Partho P.</creator><creator>Shrestha, Sirish</creator><creator>Berthon, Béatrice</creator><creator>Messas, Emmanuel</creator><creator>Donal, Erwan</creator><creator>Tison, Geoffrey H.</creator><creator>Min, James K.</creator><creator>D’hooge, Jan</creator><creator>Voigt, Jens-Uwe</creator><creator>Dudley, Joel</creator><creator>Verjans, Johan W.</creator><creator>Shameer, Khader</creator><creator>Johnson, Kipp</creator><creator>Lovstakken, Lasse</creator><creator>Tabassian, Mahdi</creator><creator>Piccirilli, Marco</creator><creator>Pernot, Mathieu</creator><creator>Yanamala, Naveena</creator><creator>Duchateau, Nicolas</creator><creator>Kagiyama, Nobuyuki</creator><creator>Bernard, Olivier</creator><creator>Slomka, Piotr</creator><creator>Deo, Rahul</creator><creator>Arnaout, Rima</creator><general>Elsevier Inc</general><general>Elsevier/American College of Cardiology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8803-2004</orcidid><orcidid>https://orcid.org/0000-0003-0752-9946</orcidid><orcidid>https://orcid.org/0000-0001-5882-8925</orcidid><orcidid>https://orcid.org/0000-0003-2677-3389</orcidid><orcidid>https://orcid.org/0000-0002-9083-1582</orcidid></search><sort><creationdate>202009</creationdate><title>Proposed Requirements for Cardiovascular Imaging-Related Machine Learning Evaluation (PRIME): A Checklist</title><author>Sengupta, Partho P. ; Shrestha, Sirish ; Berthon, Béatrice ; Messas, Emmanuel ; Donal, Erwan ; Tison, Geoffrey H. ; Min, James K. ; D’hooge, Jan ; Voigt, Jens-Uwe ; Dudley, Joel ; Verjans, Johan W. ; Shameer, Khader ; Johnson, Kipp ; Lovstakken, Lasse ; Tabassian, Mahdi ; Piccirilli, Marco ; Pernot, Mathieu ; Yanamala, Naveena ; Duchateau, Nicolas ; Kagiyama, Nobuyuki ; Bernard, Olivier ; Slomka, Piotr ; Deo, Rahul ; Arnaout, Rima</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2235-b9c6ff0f2fae4f713e6f1b3e0d7cb792851e4ede90627bd83a567dfc4c2ebb2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>artificial intelligence</topic><topic>cardiovascular imaging</topic><topic>checklist</topic><topic>Computer Science</topic><topic>digital health</topic><topic>machine learning</topic><topic>Medical Imaging</topic><topic>reporting guidelines</topic><topic>reproducible research</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sengupta, Partho P.</creatorcontrib><creatorcontrib>Shrestha, Sirish</creatorcontrib><creatorcontrib>Berthon, Béatrice</creatorcontrib><creatorcontrib>Messas, Emmanuel</creatorcontrib><creatorcontrib>Donal, Erwan</creatorcontrib><creatorcontrib>Tison, Geoffrey H.</creatorcontrib><creatorcontrib>Min, James K.</creatorcontrib><creatorcontrib>D’hooge, Jan</creatorcontrib><creatorcontrib>Voigt, Jens-Uwe</creatorcontrib><creatorcontrib>Dudley, Joel</creatorcontrib><creatorcontrib>Verjans, Johan W.</creatorcontrib><creatorcontrib>Shameer, Khader</creatorcontrib><creatorcontrib>Johnson, Kipp</creatorcontrib><creatorcontrib>Lovstakken, Lasse</creatorcontrib><creatorcontrib>Tabassian, Mahdi</creatorcontrib><creatorcontrib>Piccirilli, Marco</creatorcontrib><creatorcontrib>Pernot, Mathieu</creatorcontrib><creatorcontrib>Yanamala, Naveena</creatorcontrib><creatorcontrib>Duchateau, Nicolas</creatorcontrib><creatorcontrib>Kagiyama, Nobuyuki</creatorcontrib><creatorcontrib>Bernard, Olivier</creatorcontrib><creatorcontrib>Slomka, Piotr</creatorcontrib><creatorcontrib>Deo, Rahul</creatorcontrib><creatorcontrib>Arnaout, Rima</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>JACC. Cardiovascular imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sengupta, Partho P.</au><au>Shrestha, Sirish</au><au>Berthon, Béatrice</au><au>Messas, Emmanuel</au><au>Donal, Erwan</au><au>Tison, Geoffrey H.</au><au>Min, James K.</au><au>D’hooge, Jan</au><au>Voigt, Jens-Uwe</au><au>Dudley, Joel</au><au>Verjans, Johan W.</au><au>Shameer, Khader</au><au>Johnson, Kipp</au><au>Lovstakken, Lasse</au><au>Tabassian, Mahdi</au><au>Piccirilli, Marco</au><au>Pernot, Mathieu</au><au>Yanamala, Naveena</au><au>Duchateau, Nicolas</au><au>Kagiyama, Nobuyuki</au><au>Bernard, Olivier</au><au>Slomka, Piotr</au><au>Deo, Rahul</au><au>Arnaout, Rima</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proposed Requirements for Cardiovascular Imaging-Related Machine Learning Evaluation (PRIME): A Checklist</atitle><jtitle>JACC. Cardiovascular imaging</jtitle><date>2020-09</date><risdate>2020</risdate><volume>13</volume><issue>9</issue><spage>2017</spage><epage>2035</epage><pages>2017-2035</pages><issn>1936-878X</issn><eissn>1876-7591</eissn><abstract>Machine learning (ML) has been increasingly used within cardiology, particularly in the domain of cardiovascular imaging. Due to the inherent complexity and flexibility of ML algorithms, inconsistencies in the model performance and interpretation may occur. Several review articles have been recently published that introduce the fundamental principles and clinical application of ML for cardiologists. This paper builds on these introductory principles and outlines a more comprehensive list of crucial responsibilities that need to be completed when developing ML models. This paper aims to serve as a scientific foundation to aid investigators, data scientists, authors, editors, and reviewers involved in machine learning research with the intent of uniform reporting of ML investigations. An independent multidisciplinary panel of ML experts, clinicians, and statisticians worked together to review the theoretical rationale underlying 7 sets of requirements that may reduce algorithmic errors and biases. Finally, the paper summarizes a list of reporting items as an itemized checklist that highlights steps for ensuring correct application of ML models and the consistent reporting of model specifications and results. It is expected that the rapid pace of research and development and the increased availability of real-world evidence may require periodic updates to the checklist. [Display omitted] •Algorithm complexity and flexibility of ML techniques can result in inconsistencies in model reporting and interpretations.•The PRIME checklist provides 7 items to be reported for reducing algorithmic errors and biases.•The checklist aims to standardize reporting on model design, data, selection, assessment, evaluation, replicability, and limitations.•As artificial intelligence and ML technologies continue to grow, the checklist will need periodic updates.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcmg.2020.07.015</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-8803-2004</orcidid><orcidid>https://orcid.org/0000-0003-0752-9946</orcidid><orcidid>https://orcid.org/0000-0001-5882-8925</orcidid><orcidid>https://orcid.org/0000-0003-2677-3389</orcidid><orcidid>https://orcid.org/0000-0002-9083-1582</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-878X
ispartof JACC. Cardiovascular imaging, 2020-09, Vol.13 (9), p.2017-2035
issn 1936-878X
1876-7591
language eng
recordid cdi_hal_primary_oai_HAL_hal_03019705v1
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects artificial intelligence
cardiovascular imaging
checklist
Computer Science
digital health
machine learning
Medical Imaging
reporting guidelines
reproducible research
title Proposed Requirements for Cardiovascular Imaging-Related Machine Learning Evaluation (PRIME): A Checklist
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A32%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proposed%20Requirements%20for%20Cardiovascular%20Imaging-Related%20Machine%20Learning%20Evaluation%20(PRIME):%20A%20Checklist&rft.jtitle=JACC.%20Cardiovascular%20imaging&rft.au=Sengupta,%20Partho%20P.&rft.date=2020-09&rft.volume=13&rft.issue=9&rft.spage=2017&rft.epage=2035&rft.pages=2017-2035&rft.issn=1936-878X&rft.eissn=1876-7591&rft_id=info:doi/10.1016/j.jcmg.2020.07.015&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03019705v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1936878X20306367&rfr_iscdi=true