The Inverse Voronoi Problem in Graphs I: Hardness
We introduce the inverse Voronoi diagram problem in graphs: given a graph G with positive edge-lengths and a collection U of subsets of vertices of V ( G ), decide whether U is a Voronoi diagram in G with respect to the shortest-path metric. We show that the problem is NP-hard, even for planar graph...
Gespeichert in:
Veröffentlicht in: | Algorithmica 2020-10, Vol.82 (10), p.3018-3040 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce the inverse Voronoi diagram problem in graphs: given a graph
G
with positive edge-lengths and a collection
U
of subsets of vertices of
V
(
G
), decide whether
U
is a Voronoi diagram in
G
with respect to the shortest-path metric. We show that the problem is NP-hard, even for planar graphs where all the edges have unit length. We also study the parameterized complexity of the problem and show that the problem is W[1]-hard when parameterized by the number of Voronoi cells or by the pathwidth of the graph. |
---|---|
ISSN: | 0178-4617 1432-0541 |
DOI: | 10.1007/s00453-020-00716-4 |