Genome organization via loop extrusion, insights from polymer physics models

Understanding how genomes fold and organize is one of the main challenges in modern biology. Recent high-throughput techniques like Hi-C, in combination with cutting-edge polymer physics models, have provided access to precise information on 3D chromosome folding to decipher the mechanisms driving s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Briefings in functional genomics 2020-03, Vol.19 (2), p.119-127
Hauptverfasser: Ghosh, Surya K, Jost, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding how genomes fold and organize is one of the main challenges in modern biology. Recent high-throughput techniques like Hi-C, in combination with cutting-edge polymer physics models, have provided access to precise information on 3D chromosome folding to decipher the mechanisms driving such multi-scale organization. In particular, structural maintenance of chromosome (SMC) proteins play an important role in the local structuration of chromatin, putatively via a loop extrusion process. Here, we review the different polymer physics models that investigate the role of SMCs in the formation of topologically associated domains (TADs) during interphase via the formation of dynamic loops. We describe the main physical ingredients, compare them and discuss their relevance against experimental observations.
ISSN:2041-2657
1473-9550
2041-2657
1477-4062
DOI:10.1093/bfgp/elz023