Tidal Love numbers of Kerr black holes

The open question of whether a Kerr black hole can become tidally deformed or not has profound implications for fundamental physics and gravitational-wave astronomy. We consider a Kerr black hole embedded in a weak and slowly varying, but otherwise arbitrary, multipolar tidal environment. By solving...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2021-04, Vol.103 (8), p.1, Article 084021
Hauptverfasser: Le Tiec, Alexandre, Casals, Marc, Franzin, Edgardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The open question of whether a Kerr black hole can become tidally deformed or not has profound implications for fundamental physics and gravitational-wave astronomy. We consider a Kerr black hole embedded in a weak and slowly varying, but otherwise arbitrary, multipolar tidal environment. By solving the static Teukolsky equation for the gauge-invariant Weyl scalar ψ0 and by reconstructing the corresponding metric perturbation in an ingoing radiation gauge, for a general harmonic index ℓ, we compute the linear response of a Kerr black hole to the tidal field. This linear response vanishes identically for a Schwarzschild black hole and for an axisymmetric perturbation of a spinning black hole. For a nonaxisymmetric perturbation of a spinning black hole, however, the linear response does not vanish, and it contributes to the Geroch-Hansen multipole moments of the perturbed Kerr geometry. As an application, we compute explicitly the rotational black hole tidal Love numbers that couple the induced quadrupole moments to the quadrupolar tidal fields, to linear order in the black hole spin, and we introduce the corresponding notion of a tidal Love tensor. Finally, we show that those induced quadrupole moments are closely related to the well-known physical phenomenon of tidal torquing of a spinning body interacting with a tidal gravitational environment.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.103.084021