Synthesis and characterization of waterborne polyurethane/polyhedral oligomeric silsesquioxane composites with low dielectric constants

A facile method was developed to synthesize a new type of polyhedral oligomeric silsesquioxane (POSS). It contained a single amine group and seven aliphatic moieties on its corners. FT‐IR, 1H‐NMR, 13C‐NMR, 13C‐1H COSY, and 1H‐1H COSY confirmed that cages with eight corners were the main part of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers for advanced technologies 2019-09, Vol.30 (9), p.2313-2320
Hauptverfasser: Zhao, Hui, Zhao, Si‐Qi, Hu, Guo‐Hua, Zhang, Qun‐Chao, Liu, Yang, Huang, Chong‐Xing, Li, Wei, Jiang, Tao, Wang, Shuang‐Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A facile method was developed to synthesize a new type of polyhedral oligomeric silsesquioxane (POSS). It contained a single amine group and seven aliphatic moieties on its corners. FT‐IR, 1H‐NMR, 13C‐NMR, 13C‐1H COSY, and 1H‐1H COSY confirmed that cages with eight corners were the main part of the product. This new POSS was used to modify the structure of hexamethylene diisocyanate trimer and then copolymerized with hexamethylene diisocyanate and poly (tetramethylene glycol) to get a serious of waterborne polyurethane (WPU)/POSS hybrid materials with low dielectric constants for microelectronics applications. The results showed that POSS particles were uniformly dispersed in the WPU dispersions. The WPU/POSS films did not show any macrophase separation, even when the POSS content was as high as 16%. As the POSS content increased from 0% to 16%, the tensile strength was increased from 2.3 to 7.3 MPa, the dielectric constant was decreased from about 2.9 to 2.0, and the thermal stability of the WPU/POSS was also improved.
ISSN:1042-7147
1099-1581
DOI:10.1002/pat.4659