Regularity of prime ideals

We answer several natural questions which arise from a recent paper of McCullough and Peeva providing counterexamples to the Eisenbud–Goto Regularity Conjecture. We give counterexamples using Rees algebras, and also construct counterexamples that do not rely on the Mayr–Meyer construction. Furthermo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2019-02, Vol.291 (1-2), p.421-435
Hauptverfasser: Caviglia, Giulio, Chardin, Marc, McCullough, Jason, Peeva, Irena, Varbaro, Matteo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We answer several natural questions which arise from a recent paper of McCullough and Peeva providing counterexamples to the Eisenbud–Goto Regularity Conjecture. We give counterexamples using Rees algebras, and also construct counterexamples that do not rely on the Mayr–Meyer construction. Furthermore, examples of prime ideals for which the difference between the maximal degree of a minimal generator and the maximal degree of a minimal first syzygy can be made arbitrarily large are given. Using a result of Ananyan-Hochster we show that there exists an upper bound on regularity of prime ideals in terms of the multiplicity alone.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-018-2089-y