Speed-dispersion-induced alignment: A one-dimensional model inspired by swimming droplets experiments

We investigate the collective dynamics of self-propelled droplets, confined in a one-dimensional microfluidic channel. On the one hand, neighboring droplets align and form large trains of droplets moving in the same direction. On the other hand, the droplets condensate, leaving large regions with ve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2020-04, Vol.101 (4-1), p.040602-040602, Article 040602
Hauptverfasser: Illien, Pierre, de Blois, Charlotte, Liu, Yang, van der Linden, Marjolein N, Dauchot, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the collective dynamics of self-propelled droplets, confined in a one-dimensional microfluidic channel. On the one hand, neighboring droplets align and form large trains of droplets moving in the same direction. On the other hand, the droplets condensate, leaving large regions with very low density. A careful examination of the interactions between two "colliding" droplets demonstrates that local alignment takes place as a result of the interplay between the dispersion of their speeds and the absence of Galilean invariance. Inspired by these observations, we propose a minimalistic 1D model of active particles reproducing such dynamical rules and, combining analytical arguments and numerical evidences, we show that the model exhibits a transition to collective motion in 1D for a large range of values of the control parameters. Condensation takes place as a transient phenomena, which tremendously slows down the dynamics, before the system eventually settles into a homogeneous aligned phase.
ISSN:2470-0045
2470-0053
DOI:10.1103/PhysRevE.101.040602