Quantum dynamics of the black hole interior in loop quantum cosmology

It has been suggested that the homogeneous black hole interior spacetime, when quantized following the techniques of loop quantum cosmology, has a resolved singularity replaced by a black-to-white hole transition. This result has however been derived so far only using effective classical evolution e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2021-03, Vol.103 (6), Article 066014
Hauptverfasser: Sartini, Francesco, Geiller, Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It has been suggested that the homogeneous black hole interior spacetime, when quantized following the techniques of loop quantum cosmology, has a resolved singularity replaced by a black-to-white hole transition. This result has however been derived so far only using effective classical evolution equations, and depends on details of the so-called polymerization scheme for the Hamiltonian constraint. Here we propose to use the unimodular formulation of general relativity to study the full quantum dynamics of this mini-superspace model. When applied to such cosmological models, unimodular gravity has the advantage of trivializing the problem of time by providing a true Hamiltonian which follows a Schrödinger evolution equation. By choosing variables adapted to this setup, we show how to write semiclassical states agreeing with that of the Wheeler–DeWitt theory at late times, and how in loop quantum cosmology they evolve through the would-be singularity while remaining sharply peaked. This provides a very simple setup for the study of the full quantum dynamics of these models, which can hopefully serve to tame regularization ambiguities.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.103.066014