Regulation of monocyte subset systemic levels by distinct chemokine receptors controls post-ischaemic neovascularization
Aims Monocyte systemic levels are known to be a major determinant of ischaemic tissue revascularization, but the mechanisms mediating mobilization of different monocyte subsets—Ly6Chi and Ly6Clo—to the blood and their respective role in post-ischaemic neovascularization are not clearly understood. H...
Gespeichert in:
Veröffentlicht in: | Cardiovascular research 2010-10, Vol.88 (1), p.186-195 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 195 |
---|---|
container_issue | 1 |
container_start_page | 186 |
container_title | Cardiovascular research |
container_volume | 88 |
creator | Cochain, Clément Rodero, Mathieu P. Vilar, José Récalde, Alice Richart, Adèle L. Loinard, Céline Zouggari, Yasmine Guérin, Coralie Duriez, Micheline Combadière, Behazine Poupel, Lucie Lévy, Bernard I. Mallat, Ziad Combadière, Christophe Silvestre, Jean-Sébastien |
description | Aims Monocyte systemic levels are known to be a major determinant of ischaemic tissue revascularization, but the mechanisms mediating mobilization of different monocyte subsets—Ly6Chi and Ly6Clo—to the blood and their respective role in post-ischaemic neovascularization are not clearly understood. Here, we hypothesized that distinct chemokine/chemokine receptor pathways, namely CCL2/CCR2, CX3CL1/CX3CR1, and CCL5/CCR5, differentially control monocyte subset systemic levels, and might thus impact post-ischaemic vessel growth. Methods and results In a model of murine hindlimb ischaemia, both Ly6Chi and Ly6Clo monocyte circulating levels were increased after femoral artery ligation. CCL2/CCR2 activation enhanced blood Ly6Chi and Ly6Clo monocyte counts, although the opposite effect was seen in mice with CCL2 or CCR2 deficiency. CX3CL1/CX3CR1 strongly impacted Ly6Clo monocyte levels, whereas CCL5/CCR5 had no role. Only CCL2/CCR2 signalling influenced neovascularization, which was increased in mice overexpressing CCL2, whereas it markedly decreased in CCL2−/− mice. Moreover, adoptive transfer of Ly6Chi—but not Ly6Clo—monocytes enhanced vessel growth and blood flow recovery. Conclusion Altogether, our data demonstrate that regulation of proangiogenic Ly6Chi monocytes systemic levels by CCL2/CCR2 controls post-ischaemic vessel growth, whereas Ly6Clo monocytes have no major role in this setting. |
doi_str_mv | 10.1093/cvr/cvq153 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02998788v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>754031636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-5cc1ae2a7df5f561664458ef78656ef87769a49ffe94b46365273b17a077d4b13</originalsourceid><addsrcrecordid>eNpFkd-LEzEQx4MoXq2--AdIXuRQWE02v3Yfj8NaoaAcCnIvIZtObLzdTS_Jlqt_vem11ocwZPKZ72Tmi9BrSj5Q0rKPdhfLuaeCPUEzqoSoWM3FUzQjhDSVZJJdoBcp_S5XIRR_ji5qIggVpJ2hhxv4NfUm-zDi4PAQxmD3GXCaugQZp33KMHiLe9hBn3C3x2ufsh9txnYDQ7jzI-AIFrY5xIRtGHMMBdyGlCuf7MY8lo8QdibZ0in6P4_dXqJnzvQJXp3iHP1YfPp-vaxWXz9_ub5aVZa3PFfCWmqgNmrthBOSSsm5aMCpRgoJrlFKtoa3zkHLO15mFbViHVWGKLXmHWVz9O6ouzG93kY_mLjXwXi9vFrpQ47Ubduoptkd2Msju43hfoKU9VBGgL435f9T0kpwwuhhoXP0_kjaGFKK4M7SlOiDKbqYoo-mFPjNSXbqBlif0X8uFODtCSg7Mr2LZrQ-_edYTRVtSOGqI1csgIfzu4l3WiqmhF7-vNUL-u32ZrGUumF_ASoEpzE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>754031636</pqid></control><display><type>article</type><title>Regulation of monocyte subset systemic levels by distinct chemokine receptors controls post-ischaemic neovascularization</title><source>MEDLINE</source><source>Oxford University Press Journals</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Alma/SFX Local Collection</source><creator>Cochain, Clément ; Rodero, Mathieu P. ; Vilar, José ; Récalde, Alice ; Richart, Adèle L. ; Loinard, Céline ; Zouggari, Yasmine ; Guérin, Coralie ; Duriez, Micheline ; Combadière, Behazine ; Poupel, Lucie ; Lévy, Bernard I. ; Mallat, Ziad ; Combadière, Christophe ; Silvestre, Jean-Sébastien</creator><creatorcontrib>Cochain, Clément ; Rodero, Mathieu P. ; Vilar, José ; Récalde, Alice ; Richart, Adèle L. ; Loinard, Céline ; Zouggari, Yasmine ; Guérin, Coralie ; Duriez, Micheline ; Combadière, Behazine ; Poupel, Lucie ; Lévy, Bernard I. ; Mallat, Ziad ; Combadière, Christophe ; Silvestre, Jean-Sébastien</creatorcontrib><description>Aims Monocyte systemic levels are known to be a major determinant of ischaemic tissue revascularization, but the mechanisms mediating mobilization of different monocyte subsets—Ly6Chi and Ly6Clo—to the blood and their respective role in post-ischaemic neovascularization are not clearly understood. Here, we hypothesized that distinct chemokine/chemokine receptor pathways, namely CCL2/CCR2, CX3CL1/CX3CR1, and CCL5/CCR5, differentially control monocyte subset systemic levels, and might thus impact post-ischaemic vessel growth. Methods and results In a model of murine hindlimb ischaemia, both Ly6Chi and Ly6Clo monocyte circulating levels were increased after femoral artery ligation. CCL2/CCR2 activation enhanced blood Ly6Chi and Ly6Clo monocyte counts, although the opposite effect was seen in mice with CCL2 or CCR2 deficiency. CX3CL1/CX3CR1 strongly impacted Ly6Clo monocyte levels, whereas CCL5/CCR5 had no role. Only CCL2/CCR2 signalling influenced neovascularization, which was increased in mice overexpressing CCL2, whereas it markedly decreased in CCL2−/− mice. Moreover, adoptive transfer of Ly6Chi—but not Ly6Clo—monocytes enhanced vessel growth and blood flow recovery. Conclusion Altogether, our data demonstrate that regulation of proangiogenic Ly6Chi monocytes systemic levels by CCL2/CCR2 controls post-ischaemic vessel growth, whereas Ly6Clo monocytes have no major role in this setting.</description><identifier>ISSN: 0008-6363</identifier><identifier>EISSN: 1755-3245</identifier><identifier>DOI: 10.1093/cvr/cvq153</identifier><identifier>PMID: 20501509</identifier><identifier>CODEN: CVREAU</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Angiogenesis ; Animals ; Antigens, Ly - metabolism ; Arteriogenesis ; Biological and medical sciences ; Cardiology. Vascular system ; Chemokine CCL2 - blood ; Chemokine CCL5 - blood ; Chemokine CX3CL1 - blood ; Chemotaxis, Leukocyte ; CX3C Chemokine Receptor 1 ; Disease Models, Animal ; Hindlimb ; Inflammation ; Ischaemia ; Ischemia - immunology ; Ischemia - physiopathology ; Life Sciences ; Male ; Medical sciences ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Monocyte subset ; Monocytes - immunology ; Muscle, Skeletal - blood supply ; Neovascularization, Physiologic ; Promoter Regions, Genetic ; Receptors, CCR2 - metabolism ; Receptors, CCR5 - metabolism ; Receptors, Chemokine - deficiency ; Receptors, Chemokine - genetics ; Receptors, Chemokine - metabolism ; RNA, Messenger - metabolism ; Time Factors ; Up-Regulation</subject><ispartof>Cardiovascular research, 2010-10, Vol.88 (1), p.186-195</ispartof><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-5cc1ae2a7df5f561664458ef78656ef87769a49ffe94b46365273b17a077d4b13</citedby><cites>FETCH-LOGICAL-c494t-5cc1ae2a7df5f561664458ef78656ef87769a49ffe94b46365273b17a077d4b13</cites><orcidid>0000-0002-1300-0187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23217180$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20501509$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02998788$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cochain, Clément</creatorcontrib><creatorcontrib>Rodero, Mathieu P.</creatorcontrib><creatorcontrib>Vilar, José</creatorcontrib><creatorcontrib>Récalde, Alice</creatorcontrib><creatorcontrib>Richart, Adèle L.</creatorcontrib><creatorcontrib>Loinard, Céline</creatorcontrib><creatorcontrib>Zouggari, Yasmine</creatorcontrib><creatorcontrib>Guérin, Coralie</creatorcontrib><creatorcontrib>Duriez, Micheline</creatorcontrib><creatorcontrib>Combadière, Behazine</creatorcontrib><creatorcontrib>Poupel, Lucie</creatorcontrib><creatorcontrib>Lévy, Bernard I.</creatorcontrib><creatorcontrib>Mallat, Ziad</creatorcontrib><creatorcontrib>Combadière, Christophe</creatorcontrib><creatorcontrib>Silvestre, Jean-Sébastien</creatorcontrib><title>Regulation of monocyte subset systemic levels by distinct chemokine receptors controls post-ischaemic neovascularization</title><title>Cardiovascular research</title><addtitle>Cardiovasc Res</addtitle><description>Aims Monocyte systemic levels are known to be a major determinant of ischaemic tissue revascularization, but the mechanisms mediating mobilization of different monocyte subsets—Ly6Chi and Ly6Clo—to the blood and their respective role in post-ischaemic neovascularization are not clearly understood. Here, we hypothesized that distinct chemokine/chemokine receptor pathways, namely CCL2/CCR2, CX3CL1/CX3CR1, and CCL5/CCR5, differentially control monocyte subset systemic levels, and might thus impact post-ischaemic vessel growth. Methods and results In a model of murine hindlimb ischaemia, both Ly6Chi and Ly6Clo monocyte circulating levels were increased after femoral artery ligation. CCL2/CCR2 activation enhanced blood Ly6Chi and Ly6Clo monocyte counts, although the opposite effect was seen in mice with CCL2 or CCR2 deficiency. CX3CL1/CX3CR1 strongly impacted Ly6Clo monocyte levels, whereas CCL5/CCR5 had no role. Only CCL2/CCR2 signalling influenced neovascularization, which was increased in mice overexpressing CCL2, whereas it markedly decreased in CCL2−/− mice. Moreover, adoptive transfer of Ly6Chi—but not Ly6Clo—monocytes enhanced vessel growth and blood flow recovery. Conclusion Altogether, our data demonstrate that regulation of proangiogenic Ly6Chi monocytes systemic levels by CCL2/CCR2 controls post-ischaemic vessel growth, whereas Ly6Clo monocytes have no major role in this setting.</description><subject>Angiogenesis</subject><subject>Animals</subject><subject>Antigens, Ly - metabolism</subject><subject>Arteriogenesis</subject><subject>Biological and medical sciences</subject><subject>Cardiology. Vascular system</subject><subject>Chemokine CCL2 - blood</subject><subject>Chemokine CCL5 - blood</subject><subject>Chemokine CX3CL1 - blood</subject><subject>Chemotaxis, Leukocyte</subject><subject>CX3C Chemokine Receptor 1</subject><subject>Disease Models, Animal</subject><subject>Hindlimb</subject><subject>Inflammation</subject><subject>Ischaemia</subject><subject>Ischemia - immunology</subject><subject>Ischemia - physiopathology</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Monocyte subset</subject><subject>Monocytes - immunology</subject><subject>Muscle, Skeletal - blood supply</subject><subject>Neovascularization, Physiologic</subject><subject>Promoter Regions, Genetic</subject><subject>Receptors, CCR2 - metabolism</subject><subject>Receptors, CCR5 - metabolism</subject><subject>Receptors, Chemokine - deficiency</subject><subject>Receptors, Chemokine - genetics</subject><subject>Receptors, Chemokine - metabolism</subject><subject>RNA, Messenger - metabolism</subject><subject>Time Factors</subject><subject>Up-Regulation</subject><issn>0008-6363</issn><issn>1755-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkd-LEzEQx4MoXq2--AdIXuRQWE02v3Yfj8NaoaAcCnIvIZtObLzdTS_Jlqt_vem11ocwZPKZ72Tmi9BrSj5Q0rKPdhfLuaeCPUEzqoSoWM3FUzQjhDSVZJJdoBcp_S5XIRR_ji5qIggVpJ2hhxv4NfUm-zDi4PAQxmD3GXCaugQZp33KMHiLe9hBn3C3x2ufsh9txnYDQ7jzI-AIFrY5xIRtGHMMBdyGlCuf7MY8lo8QdibZ0in6P4_dXqJnzvQJXp3iHP1YfPp-vaxWXz9_ub5aVZa3PFfCWmqgNmrthBOSSsm5aMCpRgoJrlFKtoa3zkHLO15mFbViHVWGKLXmHWVz9O6ouzG93kY_mLjXwXi9vFrpQ47Ubduoptkd2Msju43hfoKU9VBGgL435f9T0kpwwuhhoXP0_kjaGFKK4M7SlOiDKbqYoo-mFPjNSXbqBlif0X8uFODtCSg7Mr2LZrQ-_edYTRVtSOGqI1csgIfzu4l3WiqmhF7-vNUL-u32ZrGUumF_ASoEpzE</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Cochain, Clément</creator><creator>Rodero, Mathieu P.</creator><creator>Vilar, José</creator><creator>Récalde, Alice</creator><creator>Richart, Adèle L.</creator><creator>Loinard, Céline</creator><creator>Zouggari, Yasmine</creator><creator>Guérin, Coralie</creator><creator>Duriez, Micheline</creator><creator>Combadière, Behazine</creator><creator>Poupel, Lucie</creator><creator>Lévy, Bernard I.</creator><creator>Mallat, Ziad</creator><creator>Combadière, Christophe</creator><creator>Silvestre, Jean-Sébastien</creator><general>Oxford University Press</general><general>Oxford University Press (OUP)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1300-0187</orcidid></search><sort><creationdate>20101001</creationdate><title>Regulation of monocyte subset systemic levels by distinct chemokine receptors controls post-ischaemic neovascularization</title><author>Cochain, Clément ; Rodero, Mathieu P. ; Vilar, José ; Récalde, Alice ; Richart, Adèle L. ; Loinard, Céline ; Zouggari, Yasmine ; Guérin, Coralie ; Duriez, Micheline ; Combadière, Behazine ; Poupel, Lucie ; Lévy, Bernard I. ; Mallat, Ziad ; Combadière, Christophe ; Silvestre, Jean-Sébastien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-5cc1ae2a7df5f561664458ef78656ef87769a49ffe94b46365273b17a077d4b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Angiogenesis</topic><topic>Animals</topic><topic>Antigens, Ly - metabolism</topic><topic>Arteriogenesis</topic><topic>Biological and medical sciences</topic><topic>Cardiology. Vascular system</topic><topic>Chemokine CCL2 - blood</topic><topic>Chemokine CCL5 - blood</topic><topic>Chemokine CX3CL1 - blood</topic><topic>Chemotaxis, Leukocyte</topic><topic>CX3C Chemokine Receptor 1</topic><topic>Disease Models, Animal</topic><topic>Hindlimb</topic><topic>Inflammation</topic><topic>Ischaemia</topic><topic>Ischemia - immunology</topic><topic>Ischemia - physiopathology</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Monocyte subset</topic><topic>Monocytes - immunology</topic><topic>Muscle, Skeletal - blood supply</topic><topic>Neovascularization, Physiologic</topic><topic>Promoter Regions, Genetic</topic><topic>Receptors, CCR2 - metabolism</topic><topic>Receptors, CCR5 - metabolism</topic><topic>Receptors, Chemokine - deficiency</topic><topic>Receptors, Chemokine - genetics</topic><topic>Receptors, Chemokine - metabolism</topic><topic>RNA, Messenger - metabolism</topic><topic>Time Factors</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cochain, Clément</creatorcontrib><creatorcontrib>Rodero, Mathieu P.</creatorcontrib><creatorcontrib>Vilar, José</creatorcontrib><creatorcontrib>Récalde, Alice</creatorcontrib><creatorcontrib>Richart, Adèle L.</creatorcontrib><creatorcontrib>Loinard, Céline</creatorcontrib><creatorcontrib>Zouggari, Yasmine</creatorcontrib><creatorcontrib>Guérin, Coralie</creatorcontrib><creatorcontrib>Duriez, Micheline</creatorcontrib><creatorcontrib>Combadière, Behazine</creatorcontrib><creatorcontrib>Poupel, Lucie</creatorcontrib><creatorcontrib>Lévy, Bernard I.</creatorcontrib><creatorcontrib>Mallat, Ziad</creatorcontrib><creatorcontrib>Combadière, Christophe</creatorcontrib><creatorcontrib>Silvestre, Jean-Sébastien</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Cardiovascular research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cochain, Clément</au><au>Rodero, Mathieu P.</au><au>Vilar, José</au><au>Récalde, Alice</au><au>Richart, Adèle L.</au><au>Loinard, Céline</au><au>Zouggari, Yasmine</au><au>Guérin, Coralie</au><au>Duriez, Micheline</au><au>Combadière, Behazine</au><au>Poupel, Lucie</au><au>Lévy, Bernard I.</au><au>Mallat, Ziad</au><au>Combadière, Christophe</au><au>Silvestre, Jean-Sébastien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of monocyte subset systemic levels by distinct chemokine receptors controls post-ischaemic neovascularization</atitle><jtitle>Cardiovascular research</jtitle><addtitle>Cardiovasc Res</addtitle><date>2010-10-01</date><risdate>2010</risdate><volume>88</volume><issue>1</issue><spage>186</spage><epage>195</epage><pages>186-195</pages><issn>0008-6363</issn><eissn>1755-3245</eissn><coden>CVREAU</coden><abstract>Aims Monocyte systemic levels are known to be a major determinant of ischaemic tissue revascularization, but the mechanisms mediating mobilization of different monocyte subsets—Ly6Chi and Ly6Clo—to the blood and their respective role in post-ischaemic neovascularization are not clearly understood. Here, we hypothesized that distinct chemokine/chemokine receptor pathways, namely CCL2/CCR2, CX3CL1/CX3CR1, and CCL5/CCR5, differentially control monocyte subset systemic levels, and might thus impact post-ischaemic vessel growth. Methods and results In a model of murine hindlimb ischaemia, both Ly6Chi and Ly6Clo monocyte circulating levels were increased after femoral artery ligation. CCL2/CCR2 activation enhanced blood Ly6Chi and Ly6Clo monocyte counts, although the opposite effect was seen in mice with CCL2 or CCR2 deficiency. CX3CL1/CX3CR1 strongly impacted Ly6Clo monocyte levels, whereas CCL5/CCR5 had no role. Only CCL2/CCR2 signalling influenced neovascularization, which was increased in mice overexpressing CCL2, whereas it markedly decreased in CCL2−/− mice. Moreover, adoptive transfer of Ly6Chi—but not Ly6Clo—monocytes enhanced vessel growth and blood flow recovery. Conclusion Altogether, our data demonstrate that regulation of proangiogenic Ly6Chi monocytes systemic levels by CCL2/CCR2 controls post-ischaemic vessel growth, whereas Ly6Clo monocytes have no major role in this setting.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>20501509</pmid><doi>10.1093/cvr/cvq153</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1300-0187</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6363 |
ispartof | Cardiovascular research, 2010-10, Vol.88 (1), p.186-195 |
issn | 0008-6363 1755-3245 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02998788v1 |
source | MEDLINE; Oxford University Press Journals; Free E-Journal (出版社公開部分のみ); Alma/SFX Local Collection |
subjects | Angiogenesis Animals Antigens, Ly - metabolism Arteriogenesis Biological and medical sciences Cardiology. Vascular system Chemokine CCL2 - blood Chemokine CCL5 - blood Chemokine CX3CL1 - blood Chemotaxis, Leukocyte CX3C Chemokine Receptor 1 Disease Models, Animal Hindlimb Inflammation Ischaemia Ischemia - immunology Ischemia - physiopathology Life Sciences Male Medical sciences Mice Mice, Inbred C57BL Mice, Knockout Monocyte subset Monocytes - immunology Muscle, Skeletal - blood supply Neovascularization, Physiologic Promoter Regions, Genetic Receptors, CCR2 - metabolism Receptors, CCR5 - metabolism Receptors, Chemokine - deficiency Receptors, Chemokine - genetics Receptors, Chemokine - metabolism RNA, Messenger - metabolism Time Factors Up-Regulation |
title | Regulation of monocyte subset systemic levels by distinct chemokine receptors controls post-ischaemic neovascularization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A49%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20monocyte%20subset%20systemic%20levels%20by%20distinct%20chemokine%20receptors%20controls%20post-ischaemic%20neovascularization&rft.jtitle=Cardiovascular%20research&rft.au=Cochain,%20Cl%C3%A9ment&rft.date=2010-10-01&rft.volume=88&rft.issue=1&rft.spage=186&rft.epage=195&rft.pages=186-195&rft.issn=0008-6363&rft.eissn=1755-3245&rft.coden=CVREAU&rft_id=info:doi/10.1093/cvr/cvq153&rft_dat=%3Cproquest_hal_p%3E754031636%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=754031636&rft_id=info:pmid/20501509&rfr_iscdi=true |